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Jessie (1/2)

Context: deductive verification

INRIA Saclay: the Why platform to verify C or Java programs
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Jessie (2/2)

Caduceus Krakatoa
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Ownership and Invariants (1/2)

Examples of invariants:
> x#0
> t.size = length(t.data)
» Tree t is a search tree

» Tree t is balanced
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Ownership and Invariants (2/2)

Existing systems:
» Spec# / Boogie
» Universes type system
» Capabilities
> ...

And in Jessie?
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Problems

Memory model of Jessie:
» Pointer arithmetic

» Used to encode arrays
» A single pointer may be shifted to access several others

» Memory separation

» Memory is split into several maps from pointers to values
» Simplifies pointer aliasing problems
» Global properties of the ownership system are harder to express

Ownership, Pointer Arithmetic, and Memory Separation Introduction Problems 7/ 32



Our Approach

» Provide a small core language formalizing ownership and
invariants

» Captures the core ideas of ownership
» Simple formalization usable in proofs
» Easy to extend

» Pointer arithmetic

» Express the global properties of the ownership system, in the
logic, using assumptions
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Syntax

Ownership, Pointer Arithmetic, and Memory Separation

v Values
X Variables
let x=c¢eine Binding
e e Sequence
while e do e Turing-completion
if e then e else e Test
new (e;/;r) Allocation
le Dereferencing
e:=e Assignment
pack e Packing
unpack e Unpacking
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Semantics (1/4)

Allocation (p fresh in I):
Mnew (vil;r) — Tp=(v;;r)°p
Assignment:

o

Mp=(vi;;n)°p:=w — T,p={(v;/;r)° unit
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Semantics (2/4)

Packing (only if / holds in T):

p={(vil;p1--pn)° )
I, : pack
<p1:R1X:"'7pn:Rr>;< P P

—

p={(v;l;p1--pn)* > .
I, s unit
(pl__R:([g)f"vpn:R;@
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Semantics (3/4)

Unpacking:

p={(v;l;p1-- pn)* >
r, sunpack
<p1:R1®,---,p,,——RS§’ P P

—

p={(vilip1- pn)° ) -
I, Junit
(pl = R]?<7 7pn:Rr;<
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Semantics (4/4)

Assignment can only be done on open (unpacked) pointers:
[¢]

r7p:<\/1;l;r>;p::V2 — F,p:(v2;l;r)°;unit

This ensures that invariants are not broken.
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Example (1/2)

[Miiller, challenges in Java program verification]

Let t be an array of integer of size n.

int i, j, count = 0;

for (i=0; i < t.length; i++)
if (t[i] > 0) count++;

int u[] = new int[count];

for (i=0, j=0; i < m; i++)
if (¢[i]l > 0) ulj++] = t[il;

This copies the positive elements of t in the new array u.

Problem: access u[j++] inside array bounds?
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Example (2/2)

let / = new (0; true; () in

let j = new (0; true; () in

let count = new (0; (Ap.!p = Card{i | t[i] > 0}); t[0..n]) in

while !/ < n do
(if 1t[!i] > 0 then count :=!count + 1;
i:=li+1);

pack count;

let v = new (0; true; 0)[!count] in

i:=0;

while !/ < n do
(if 1z[!7] > 0 then (u[lj] :=!t[li];j =+ 1))
i=li+1)
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Pointer Shifting

We axiomatize pointer shifting &:

pdi=p << i=0
(pi)aj=pa(i+))

Pointers do not have to be all related together by &.

pd—1 p pd1 pd2
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Extending Allocation

new )o.(v; /(o);r(0))[n]

allocates the following fresh pointers:

p@ o= (v:1(0); H(o))

where 0 € {0,--- ,n—1}.

All these pointers are known to be related by ®.
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Examples (1/3)

An array of positive integers:

new \o.(0; (Ap.!p > 0); 0)[n]
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Examples (2/3)

A pointer on an array of positive integers:

let p = new M\o.(0; true; §)[n] in
new (0; (Yo, !(!p® o) >0); p® [0..(n—1)])
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Examples (3/3)

let / = new (0; true; () in

let j = new (0; true; () in

let count = new (0; (Ap.!p= Card{i | t & i > 0});t & [0..n]) in

while !/ < n do
(if 1t®d!/ > 0 then count :=!count + 1;
i:=li+1);

pack count;

let v = new \o.(0; true; 0)[! count] in

i:=0;

while !i < n do
(if tli > 0 then (ud!lj :=1tdli; j =i+ 1))
i=li+1)
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With One Heap (1/3)

Global ownership properties:
> pis closed = Inv(p)
» pis closed = reps of p are owned
» Owner of p is unique

Axioms?
Depends on the heap.

In Spec# / Boogie: IsHeap

Vh. IsHeap(h) = Global _ownership_properties(h)
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With One Heap (2/3)

Another point of view: assumptions

The following code:

x =ly

becomes, at the Boogie or Why level:
assume Global_ownership_properties(h)

h := store(h, x, select(h, y))
assume Global_ownership_properties(h)
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With One Heap (3/3)

Suppose a free variable x.

let y = new (0; (Ap.!p >!x); x) in y :=Ix + 1; pack y;y

Post-condition: ly >Ix

Resulting proof obligation (simplified):

Vh,x,y

IsHeap(h) = select(h,y) > select(h, x)
closed(h, y)
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With Multiple Memories

The heap h is split into several maps from pointers to values.

Vhy, hy.x,y
IsHeap(777) = select(hy,y) > select(hy, x)
closed(hy,y)
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Linking Memories (1/2)

Axiom:

Vh,hy, hy.
linked (h, hyx) . .
linked(h, b, = Global_ownership_properties(h, h,, h,)

IsHeap(h)
Proof obligation:

Vh,hy, hy X,y
linked(h, hy)

linked(h, hy) = select(hy,y) > select(hy, x)
IsHeap(h)

closed(hy,y)

This is inconsistent!
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Linking Memories (2/2)

Solution: use the assumption point of view.

...some code...
assume Global_ownership_properties( Current_heap,, Current_heap,))
...some code...

Proof obligation:

Vhy, hy,x,y
Global ownership_properties(hy, h,) » = select(hy,y) > select(hy, x)
closed(hy,y)
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Example

pack count;

while 1/ < n do
(if 1t®!i > 0 then (u®!j :=!t®li;j :=1j + 1))
i=li+1)

Thanks to memory separation:

» Contents of array t is not modified: trivial

Thanks to the invariant system:

» All accesses to array u are valid: immediate consequence of
closed(count) and the assumed global ownership properties
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Conclusion

The power of the ownership system of Spec#...
» captured in a small core language,
» implemented with pointer arithmetic,

» and memory separation.
Other possible extensions such as classes (implemented in Jessie).

Could be used in ESC/Java, ...
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