Ownership, Pointer Arithmetic
and Memory Separation

Romain Bardou
INRIA Saclay, France

FTfJP2008

Ownership, Pointer Arithmetic, and Memory Separation 1/32

Introduction
Jessie
Ownership and Invariants
Problems
Our Approach

Core Language
Pointer Arithmetic
Memory Separation

Conclusion

Ownership, Pointer Arithmetic, and Memory Separation Introduction 2 /32

Jessie (1/2)

Context: deductive verification

INRIA Saclay: the Why platform to verify C or Java programs

Ownership, Pointer Arithmetic, and Memory Separation Introduction Jessie 3/ 32

Jessie (2/2)

Caduceus Krakatoa

Ownership, Pointer Arithmetic, and Memory Separation Introduction Jessie 4 / 32

Ownership and Invariants (1/2)

Examples of invariants:
> x#0
> t.size = length(t.data)
» Tree t is a search tree

» Tree t is balanced

Ownership, Pointer Arithmetic, and Memory Separation Introduction

Ownership and Invariants

5 /32

Ownership and Invariants (2/2)

Existing systems:
» Spec# / Boogie
» Universes type system
» Capabilities
> ...

And in Jessie?

Ownership, Pointer Arithmetic, and Memory Separation Introduction Ownership and Invariants 6/ 32

Problems

Memory model of Jessie:
» Pointer arithmetic

» Used to encode arrays
» A single pointer may be shifted to access several others

» Memory separation

» Memory is split into several maps from pointers to values
» Simplifies pointer aliasing problems
» Global properties of the ownership system are harder to express

Ownership, Pointer Arithmetic, and Memory Separation Introduction Problems 7/ 32

Our Approach

» Provide a small core language formalizing ownership and
invariants

» Captures the core ideas of ownership
» Simple formalization usable in proofs
» Easy to extend

» Pointer arithmetic

» Express the global properties of the ownership system, in the
logic, using assumptions

Ownership, Pointer Arithmetic, and Memory Separation Introduction Our Approach 8/ 32

Introduction

Core Language
Syntax
Semantics
Example

Pointer Arithmetic
Memory Separation

Conclusion

Ownership, Pointer Arithmetic, and Memory Separation Core Language 9 /32

Syntax

Ownership, Pointer Arithmetic, and Memory Separation

v Values
X Variables
let x=c¢eine Binding
e e Sequence
while e do e Turing-completion
if e then e else e Test
new (e;/;r) Allocation
le Dereferencing
e:=e Assignment
pack e Packing
unpack e Unpacking
Core Language Syntax 10 / 32

Semantics (1/4)

Allocation (p fresh in I):
Mnew (vil;r) — Tp=(v;;r)°p
Assignment:

o

Mp=(vi;;n)°p:=w — T,p={(v;/;r)° unit

Ownership, Pointer Arithmetic, and Memory Separation Core Language Semantics 11 / 32

Semantics (2/4)

Packing (only if / holds in T):

p={(vil;p1--pn)°)
I, : pack
<p1:R1X:"'7pn:Rr>;< P P

—

p={(v;l;p1--pn)* > .
I, s unit
(pl__R:([g)f"vpn:R;@

Ownership, Pointer Arithmetic, and Memory Separation Core Language Semantics 12 / 32

Semantics (3/4)

Unpacking:

p={(v;l;p1-- pn)* >
r, sunpack
<p1:R1®,---,p,,——RS§’ P P

—

p={(vilip1- pn)°) -
I, Junit
(pl = R]?<7 7pn:Rr;<

Ownership, Pointer Arithmetic, and Memory Separation Core Language Semantics 13 / 32

Semantics (4/4)

Assignment can only be done on open (unpacked) pointers:
[¢]

r7p:<\/1;l;r>;p::V2 — F,p:(v2;l;r)°;unit

This ensures that invariants are not broken.

Ownership, Pointer Arithmetic, and Memory Separation Core Language Semantics 14 / 32

Example (1/2)

[Miiller, challenges in Java program verification]

Let t be an array of integer of size n.

int i, j, count = 0;

for (i=0; i < t.length; i++)
if (t[i] > 0) count++;

int u[] = new int[count];

for (i=0, j=0; i < m; i++)
if (¢[i]l > 0) ulj++] = t[il;

This copies the positive elements of t in the new array u.

Problem: access u[j++] inside array bounds?

Ownership, Pointer Arithmetic, and Memory Separation Core Language Example 15 / 32

Example (2/2)

let / = new (0; true; () in

let j = new (0; true; () in

let count = new (0; (Ap.!p = Card{i | t[i] > 0}); t[0..n]) in

while !/ < n do
(if 1t[!i] > 0 then count :=!count + 1;
i:=li+1);

pack count;

let v = new (0; true; 0)[!count] in

i:=0;

while !/ < n do
(if 1z[!7] > 0 then (u[lj] :=!t[li];j =+ 1))
i=li+1)

Ownership, Pointer Arithmetic, and Memory Separation Core Language Example 16 / 32

Introduction
Core Language

Pointer Arithmetic
Pointer Shifting
Extending Allocation
Examples

Memory Separation

Conclusion

Ownership, Pointer Arithmetic, and Memory Separation Pointer Arithmetic 17 / 32

Pointer Shifting

We axiomatize pointer shifting &:

pdi=p << i=0
(pi)aj=pa(i+))

Pointers do not have to be all related together by &.

pd—1 p pd1 pd2

Ownership, Pointer Arithmetic, and Memory Separation Pointer Arithmetic Pointer Shifting 18 / 32

Extending Allocation

new)o.(v; /(o);r(0))[n]

allocates the following fresh pointers:

p@ o= (v:1(0); H(o))

where 0 € {0,--- ,n—1}.

All these pointers are known to be related by ®.

Ownership, Pointer Arithmetic, and Memory Separation Pointer Arithmetic Extending Allocation 19 / 32

Examples (1/3)

An array of positive integers:

new \o.(0; (Ap.!p > 0); 0)[n]

Ownership, Pointer Arithmetic, and Memory Separation Pointer Arithmetic Examples 20 / 32

Examples (2/3)

A pointer on an array of positive integers:

let p = new M\o.(0; true; §)[n] in
new (0; (Yo, !(!p® o) >0); p® [0..(n—1)])

Ownership, Pointer Arithmetic, and Memory Separation Pointer Arithmetic Examples 21 /32

Examples (3/3)

let / = new (0; true; () in

let j = new (0; true; () in

let count = new (0; (Ap.!p= Card{i | t & i > 0});t & [0..n]) in

while !/ < n do
(if 1t®d!/ > 0 then count :=!count + 1;
i:=li+1);

pack count;

let v = new \o.(0; true; 0)[! count] in

i:=0;

while !i < n do
(if tli > 0 then (ud!lj :=1tdli; j =i+ 1))
i=li+1)

Ownership, Pointer Arithmetic, and Memory Separation Pointer Arithmetic Examples 22 /32

Introduction
Core Language
Pointer Arithmetic

Memory Separation
With One Heap
With Multiple Memories
Linking Memories
Example

Conclusion

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation 23 /32

With One Heap (1/3)

Global ownership properties:
> pis closed = Inv(p)
» pis closed = reps of p are owned
» Owner of p is unique

Axioms?
Depends on the heap.

In Spec# / Boogie: IsHeap

Vh. IsHeap(h) = Global _ownership_properties(h)

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation With One Heap

24 / 32

With One Heap (2/3)

Another point of view: assumptions

The following code:

x =ly

becomes, at the Boogie or Why level:
assume Global_ownership_properties(h)

h := store(h, x, select(h, y))
assume Global_ownership_properties(h)

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation With One Heap

25 / 32

With One Heap (3/3)

Suppose a free variable x.

let y = new (0; (Ap.!p >!x); x) in y :=Ix + 1; pack y;y

Post-condition: ly >Ix

Resulting proof obligation (simplified):

Vh,x,y

IsHeap(h) = select(h,y) > select(h, x)
closed(h, y)

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation With One Heap 26 / 32

With Multiple Memories

The heap h is split into several maps from pointers to values.

Vhy, hy.x,y
IsHeap(777) = select(hy,y) > select(hy, x)
closed(hy,y)

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation With Multiple Memories 27 / 32

Linking Memories (1/2)

Axiom:

Vh,hy, hy.
linked (h, hyx) . .
linked(h, b, = Global_ownership_properties(h, h,, h,)

IsHeap(h)
Proof obligation:

Vh,hy, hy X,y
linked(h, hy)

linked(h, hy) = select(hy,y) > select(hy, x)
IsHeap(h)

closed(hy,y)

This is inconsistent!

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation Linking Memories 28 / 32

Linking Memories (2/2)

Solution: use the assumption point of view.

...some code...
assume Global_ownership_properties(Current_heap,, Current_heap,))
...some code...

Proof obligation:

Vhy, hy,x,y
Global ownership_properties(hy, h,) » = select(hy,y) > select(hy, x)
closed(hy,y)

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation Linking Memories 29 / 32

Example

pack count;

while 1/ < n do
(if 1t®!i > 0 then (u®!j :=!t®li;j :=1j + 1))
i=li+1)

Thanks to memory separation:

» Contents of array t is not modified: trivial

Thanks to the invariant system:

» All accesses to array u are valid: immediate consequence of
closed(count) and the assumed global ownership properties

Ownership, Pointer Arithmetic, and Memory Separation Memory Separation Example 30 / 32

Introduction

Core Language
Pointer Arithmetic
Memory Separation

Conclusion

Ownership, Pointer Arithmetic, and Memory Separation Conclusion 31 /32

Conclusion

The power of the ownership system of Spec#...
» captured in a small core language,
» implemented with pointer arithmetic,

» and memory separation.
Other possible extensions such as classes (implemented in Jessie).

Could be used in ESC/Java, ...

Ownership, Pointer Arithmetic, and Memory Separation Conclusion 32 /32

	Introduction
	Jessie
	Ownership and Invariants
	Problems
	Our Approach

	Core Language
	Syntax
	Semantics
	Example

	Pointer Arithmetic
	Pointer Shifting
	Extending Allocation
	Examples

	Memory Separation
	With One Heap
	With Multiple Memories
	Linking Memories
	Example

	Conclusion

