Ownership, Pointer Arithmetic and Memory Separation

> Romain Bardou INRIA Saclay, France

> > FTfJP2008

Ownership, Pointer Arithmetic, and Memory Separation

#### Introduction

Jessie Ownership and Invariants Problems Our Approach

Core Language

Pointer Arithmetic

Memory Separation

### Conclusion

Ownership, Pointer Arithmetic, and Memory Separation

Introduction



#### Context: deductive verification

### INRIA Saclay: the Why platform to verify C or Java programs

Ownership, Pointer Arithmetic, and Memory Separation

Introduction

# Jessie (2/2)



Ownership, Pointer Arithmetic, and Memory Separation

Introduction

Jessie

4 / 32

## Ownership and Invariants (1/2)

Examples of invariants:

- ► x ≠ 0
- t.size = length(t.data)
- Tree t is a search tree
- Tree t is balanced

## Ownership and Invariants (2/2)

Existing systems:

- ► Spec# / Boogie
- Universes type system
- Capabilities

. . .

And in Jessie?

### Problems

Memory model of Jessie:

- Pointer arithmetic
  - Used to encode arrays
  - ► A single pointer may be shifted to access several others
- Memory separation
  - Memory is *split* into several maps from pointers to values
  - Simplifies pointer aliasing problems
  - Global properties of the ownership system are harder to express

### Our Approach

- Provide a small core language formalizing ownership and invariants
  - Captures the core ideas of ownership
  - Simple formalization usable in proofs
  - Easy to extend
    - Pointer arithmetic

Express the global properties of the ownership system, in the logic, using assumptions

#### Introduction

### Core Language Syntax Semantics Example

#### Pointer Arithmetic

Memory Separation

### Conclusion

Ownership, Pointer Arithmetic, and Memory Separation

Core Language

### Syntax

Values е V Variables х let x = e in eBinding Sequence e: e while e do e **Turing-completion** if e then e else e Test **new**  $\langle e; I; \mathbf{r} \rangle$ Allocation !e Dereferencing Assignment e := epack e Packing unpack e Unpacking

# Semantics (1/4)

Allocation (p fresh in  $\Gamma$ ):

$$\mathsf{\Gamma}; \mathbf{new} \ \langle v; \mathit{I}; \mathbf{r} \rangle \ \ \rightarrow \ \ \mathsf{\Gamma}, \mathit{p} = \langle v; \mathit{I}; \mathbf{r} \rangle^{\circ}; \mathit{p}$$

Assignment:

$$\Gamma, p = \langle v_1; I; \mathbf{r} \rangle^{\circ}; p := v_2 \rightarrow \Gamma, p = \langle v_2; I; \mathbf{r} \rangle^{\circ};$$
 unit

Ownership, Pointer Arithmetic, and Memory Separation

Core Language

## Semantics (2/4)

Packing (only if I holds in  $\Gamma$ ):

$$\Gamma, \left(\begin{array}{c} p = \langle v; I; p_1 \cdots p_n \rangle^{\circ} \\ p_1 = R_1^{\times}, \cdots, p_n = R_n^{\times} \end{array}\right); \text{ pack } p \\ \longrightarrow \\ \Gamma, \left(\begin{array}{c} p = \langle v; I; p_1 \cdots p_n \rangle^{\times} \\ p_1 = R_1^{\otimes}, \cdots, p_n = R_n^{\otimes} \end{array}\right); \text{ unit }$$

Ownership, Pointer Arithmetic, and Memory Separation

Core Language

# Semantics (3/4)

### Unpacking:

$$\Gamma, \begin{pmatrix} p = \langle v; I; p_1 \cdots p_n \rangle^{\times} \\ p_1 = R_1^{\otimes}, \cdots, p_n = R_n^{\otimes} \end{pmatrix}; \text{ unpack } p \\ \rightarrow \\ \Gamma, \begin{pmatrix} p = \langle v; I; p_1 \cdots p_n \rangle^{\circ} \\ p_1 = R_1^{\times}, \cdots, p_n = R_n^{\times} \end{pmatrix}; \text{ unit}$$

Ownership, Pointer Arithmetic, and Memory Separation

Core Language

Semantics

## Semantics (4/4)

Assignment can only be done on open (unpacked) pointers:

$$\Gamma, p = \langle v_1; I; \mathbf{r} 
angle^\circ; p := v_2 \rightarrow \Gamma, p = \langle v_2; I; \mathbf{r} 
angle^\circ;$$
 unit

This ensures that invariants are not broken.

# Example (1/2)

[Müller, challenges in Java program verification]

Let t be an array of integer of size n.

```
int i, j, count = 0;
for (i=0; i < t.length; i++)
    if (t[i] > 0) count++;
int u[] = new int[count];
for (i=0, j=0; i < n; i++)
    if (t[i] > 0) u[j++] = t[i];
```

This copies the positive elements of t in the new array u.

```
Problem: access u[j++] inside array bounds?
```

# Example (2/2)

```
let i = \text{new} \langle 0; \text{true}; \emptyset \rangle in
let i = \text{new} \langle 0; \text{true}; \emptyset \rangle in
let count = new \langle 0; (\lambda p.!p = Card\{i \mid t[i] > 0\}); t[0..n] \rangle in
while !i < n do
  (if |t[!i] > 0 then count := !count + 1;
  i := !i + 1);
pack count;
let u = \text{new} \langle 0; \text{true}; \emptyset \rangle [!count] in
i := 0:
while !i < n do
  (if !t[!i] > 0 then (u[!j] := !t[!i]; j := !j + 1))
  i := !i + 1
```

#### Introduction

Core Language

#### Pointer Arithmetic

Pointer Shifting Extending Allocation Examples

Memory Separation

### Conclusion

Ownership, Pointer Arithmetic, and Memory Separation

Pointer Arithmetic

### Pointer Shifting

We axiomatize pointer shifting  $\oplus$ :

$$p \oplus i = p \iff i = 0$$
  
 $(p \oplus i) \oplus j = p \oplus (i + j)$ 

Pointers do *not* have to be all related together by  $\oplus$ .

| <br>$p\oplus -1$ | p | $p\oplus 1$ | $p\oplus 2$ |  |
|------------------|---|-------------|-------------|--|

### Extending Allocation

**new**  $\lambda o. \langle v; I(o); \mathbf{r}(o) \rangle [n]$ 

allocates the following fresh pointers:

$$p \oplus o = \langle v; I(o); \mathbf{r}(o) \rangle$$

where  $o \in \{0, \cdots, n-1\}$ .

All these pointers are known to be related by  $\oplus$ .

Ownership, Pointer Arithmetic, and Memory Separation

Pointer Arithmetic

Extending Allocation

# Examples (1/3)

An array of positive integers:

new 
$$\lambda o. \langle 0; (\lambda p.!p \geq 0); \emptyset 
angle [n]$$



## Examples (2/3)

A pointer on an array of positive integers:

let 
$$p = \text{new } \lambda o.\langle 0; \text{true}; \emptyset \rangle [n]$$
 in  
new  $\langle 0; (\forall o, !(!p \oplus o) \ge 0); p \oplus [0..(n-1)] \rangle$ 



# Examples (3/3)

```
let i = \text{new} \langle 0; \text{true}; \emptyset \rangle in
let i = \text{new} \langle 0; \text{true}; \emptyset \rangle in
let count = new \langle 0; (\lambda p.!p = Card\{i \mid t \oplus i > 0\}); t \oplus [0..n] \rangle in
while !i < n do
  (if !t \oplus !i > 0 then count := !count + 1;
  i := !i + 1);
pack count;
let u = \text{new } \lambda o. \langle 0; \text{true}; \emptyset \rangle [! count] in
i := 0:
while !i < n do
  (if !t \oplus !i > 0 then (u \oplus !j := !t \oplus !i; j := !j + 1))
  i := !i + 1
```

#### Introduction

Core Language

Pointer Arithmetic

Memory Separation With One Heap With Multiple Memories Linking Memories Example

### Conclusion

Ownership, Pointer Arithmetic, and Memory Separation

Memory Separation

# With One Heap (1/3)

Global ownership properties:

- p is closed  $\implies Inv(p)$
- p is closed  $\implies$  reps of p are owned
- Owner of p is unique

Axioms?

Depends on the heap.

In Spec# / Boogie: *IsHeap* 

 $\forall h. \ IsHeap(h) \Longrightarrow Global\_ownership\_properties(h)$ 

Ownership, Pointer Arithmetic, and Memory Separation

Memory Separation

# With One Heap (2/3)

Another point of view: assumptions

The following code:

x := !y

becomes, at the Boogie or Why level:

**assume**  $Global_ownership_properties(h)$ h := store(h, x, select(h, y))**assume**  $Global_ownership_properties(h)$ 

Ownership, Pointer Arithmetic, and Memory Separation

## With One Heap (3/3)

Suppose a free variable x.

let  $y = \text{new} \langle 0; (\lambda p.!p > !x); x \rangle$  in y := !x + 1; pack y; y

Post-condition: |y > |x|

Resulting proof obligation (simplified):

$$\left. \begin{array}{l} \forall h, x, y \\ lsHeap(h) \\ closed(h, y) \end{array} \right\} \Longrightarrow select(h, y) > select(h, x)$$

The heap h is split into several maps from pointers to values.

$$\left. \begin{array}{c} \forall h_{x}, h_{y}, x, y \\ \text{IsHeap}(\ref{eq:hy}, y) \\ \text{closed}(h_{y}, y) \end{array} \right\} \Longrightarrow \text{select}(h_{y}, y) > \text{select}(h_{x}, x)$$

# Linking Memories (1/2)

Axiom:

$$\left. \begin{array}{c} \forall h, h_{x}, h_{y}, \\ linked(h, h_{x}) \\ linked(h, h_{y}) \\ lsHeap(h) \end{array} \right\} \Longrightarrow Global\_ownership\_properties(h, h_{x}, h_{y})$$

Proof obligation:

 $\begin{array}{c} \forall h, h_{x}, h_{y}, x, y \\ linked(h, h_{x}) \\ linked(h, h_{y}) \\ lsHeap(h) \\ closed(h_{y}, y) \end{array} \end{array} \} \Longrightarrow select(h_{y}, y) > select(h_{x}, x)$ 

This is inconsistent!

Ownership, Pointer Arithmetic, and Memory Separation

Memory Separation

Linking Memories

## Linking Memories (2/2)

Solution: use the assumption point of view.

...some code...
assume Global\_ownership\_properties(Current\_heap<sub>x</sub>, Current\_heap<sub>y</sub>)
...some code...

Proof obligation:

 $\left. \begin{array}{l} \forall h_x, h_y, x, y \\ \hline Global\_ownership\_properties(h_x, h_y) \\ closed(h_y, y) \end{array} \right\} \Rightarrow select(h_y, y) > select(h_x, x) \end{array}$ 

### Example

pack count; while  $!i \le n$  do (if  $!t \oplus !i > 0$  then  $(u \oplus !j := !t \oplus !i; j := !j + 1)$ ) i := !i + 1

Thanks to memory separation:

Contents of array t is not modified: trivial

Thanks to the invariant system:

All accesses to array u are valid: immediate consequence of closed(count) and the assumed global ownership properties

#### Introduction

Core Language

**Pointer Arithmetic** 

Memory Separation

Conclusion

Ownership, Pointer Arithmetic, and Memory Separation

Conclusion

### Conclusion

The power of the ownership system of Spec#...

- captured in a small core language,
- implemented with pointer arithmetic,
- and memory separation.

Other possible extensions such as classes (implemented in Jessie).

Could be used in ESC/Java, ...