
Ownership, Pointer Arithmetic and Memory Separation

Romain Bardou?

ENS Cachan, F-94230
& Univ Paris-Sud, CNRS, Orsay F-91405

& INRIA Saclay - Île-de-France, ProVal, Orsay, F-91893

Abstract. Ownership systems provide a way to reason about data structures in
a hierarchical fashion. We propose a small but extensible language featuring an
ownership system and data invariants. It is then extended with pointer arithmetic,
showing how to specify array invariants. We show how to express the global
properties of the ownership system in the logic. This method can be used with a
memory model featuring memory separation, and provides a practical way to use
invariants in deductive verification of programs. We implemented the proposed
system in the Why platform and applied it to C and Java programs.

1 Introduction

One way of proving computer program properties is to annotate programs with specifi-
cations, and then use a verification condition generator (VCG) to produce proof obliga-
tions. These obligations, once proven, ensure the adequation of programs with respect
to their specification.

The specification language can feature data invariants. For instance, a balanced bi-
nary search tree has two invariants: it is sorted, and it is balanced. A program breaking
the “balanced” invariant will not be as efficient; and a program breaking the “sorted”
invariant will not even be sound. Thus, the VCG must produce proof obligations ensur-
ing that data invariants are not broken. For instance, the soundness of a search function
might rely on the “sorted” invariant. Handling data invariants in a sound way is not
trivial, in particular for object-oriented programs [12].

A key issue is to choose an invariant policy saying when an invariant is supposed
to hold. A strong invariant policy, where invariants hold permanently, is too constrain-
ing. For instance, when inserting a new element into a binary search tree, its invariants
might temporarily be broken. In the Java Modeling Language (JML) [5], invariants are
supposed to hold at method boundaries for all accessible objects. This policy is difficult
to support, both for static and dynamic verification tools.

Ownership is a particular invariant policy where objects can own other objects. By
preventing owned objects to be modified, the language can allow the invariant of an
object to depend on its owned objects. Barnett et al. [2] use ownership in the Boogie
methodology, which is used to prove C# programs using the Spec# language. Dietl and
Müller use ownership in JML, using the Universe type system [6]. Boulmé and Potet
use ownership to interpret invariant composition in the B method [4].
? This work is partly supported by the ARC INRIA “CeProMi”

(http://www.lri.fr/cepromi/) and by the “CAT” grant ANR-05-RNTL-00302

Ownership and invariant systems have global properties such as: “every object built
by the program verifies its invariants”, that are important to prove a program specifica-
tion. It is tempting to provide these properties as axioms to the user, but the predicate
“built by the program” is hard to express in the logic. The VCG cannot just enumerate
objects in memory and add their invariants in hypotheses, as the number of these objects
is unknown, and would be too big anyway.

In the Why platform [8], functions are specified using pre-conditions and post-con-
ditions, as in Hoare logic [9]. The Why VCG, based on Dijkstra’s weakest pre-condition
calculus [7], computes proof obligations from these specifications. The Why platform
contains an intermediate language called Jessie, whose memory model features pointer
arithmetic and memory separation using the “component-as-array” model of Burstall
and Bornat [3]. This model causes problems to implement an ownership system:

– because of pointer arithmetic, a field of a structure can represent several ownable
objects;

– because of memory separation, the global invariants of the ownership system are
harder to express.

Memory separation allows to reason about pointer modification without having to
worry about pointer aliases, as memory is syntactically split into several regions. In
particular, this simplifies modular reasoning about programs. Other works tackle this
problem, such as separation logic [14] or systems where the user himself may define
region variables as location sets [1]. Dynamic frames [11, 15], in particular, allow these
variables to be modified during the execution. These systems allow finer memory sepa-
ration than in Jessie, at the cost of verbosity.

This paper proposes a small formal language with ownership and invariants, com-
patible with the memory model of Jessie, i.e., with pointer arithmetic and memory sep-
aration. We also show how to use invariants when proving the proof obligations of a
program. This proposal generalizes the work of Barnett et al. in Spec# and was imple-
mented in Jessie, allowing to test it on C and Java programs.

2 Invariants and Ownership

In this section, we give an intuitive description of our ownership system, which is
mostly the same than the one used in Spec# [2].

In this paper, the term “object” does not necessarily refer to an instance of a class.
In fact, an object is any reference (or pointer) to any data structure.

Objects Are Boxes If a box 2 is inside a box4, then 2 is owned by4. If4 is itself
inside another box 3, then 2 is also owned by 3, because 2 is also inside 3. This
defines the ownership relation on objects.

The ownership relation is the transitive closure of the direct ownership relation. 2

is directly owned by 4 if 2 is owned by 4, and if for all boxes 3 owning 2, 3 = 4
or 3 owns4. In other words, there is no box between 2 and its direct owner.

The direct owner is unique. It doesn’t have to exist, though: a box which is not
inside any other box is not owned, nor directly owned.

Boxes Can Be Open or Closed To modify the content of a box, it must be open. And
to open a box, it must be outside any other box, i.e., it must not be owned. This means
that to modify an owned object, one must open its owner first. Of course, this owner
might be in another bigger box that we might need to open before.

Before closing a box, we must check that all the boxes it contains are already closed.
In other words, an object can only own – directly or not – closed objects, and an open
object cannot be owned.

Invariants on Closed Boxes The problem with an invariant is that it can be broken.
Let’s say that you have an integer x, and an invariant saying that x 6= 0. Nothing
prevents the programmer from assigning 0 to x.

Except if the structure is closed. If we always check its invariant before closing
x, we know that x 6= 0 always holds when x is closed, because x cannot have been
modified since its invariant was checked. By transitivity, if a box is closed, every object
it contains also verifies its invariants.

Invariants on Multiple Objects If an invariant depends on several objects, we have to
check it each time one of these objects is closed, and we can only assume it if all the
objects are closed. This constraint is too heavy.

In the ownership system of Spec#, invariants are associated to objects. The invari-
ants of 2 can only depend on the objects that 2 owns. Thus, it is sufficient to check
the invariant of 2 only when closing 2, because the other boxes on which the invariant
depends are already closed, as they are owned by 2.

3 Core Language

In this section we define a small core language featuring pointers on values. These
values are our boxes: they contain an invariant and may be open or closed. We show
how to express and prove the soundness of the ownership system.

Syntax The syntax of our core language is defined in Fig. 1. Values are expressions
which cannot be reduced. They may be constants or pointers. Pointers are not directly
used when programming; they are the result of allocation. They are annotated with
their types. The language has basic expressions: let-binding, sequence, while loops and
if-then-else tests.

A pointer p is allocated using new 〈v; I; r〉. The value v can be accessed by deref-
erencing using !p or modified using p := e. Pointers are the boxes of the ownership
system: they have an invariant I which is given at allocation. I may depend on the con-
tents of p and a set of pointers r, which are also given at allocation. We assume given a
syntax for sets of pointers, such as in assignable clauses of JML. These are the reps
pointers of p (standing for “representation” pointers). Finally, pointers can be closed or
opened using pack or unpack. As in Spec#, ownership transfer on a pointer p can be
achieved to change the ownership hierarchy by unpacking the owner of p and packing
another owner which has p as a rep.

Expressions:
e ::= v Values
| x Variables
| let x = e in e Binding
| e; e Seq
| while e do e Turing-completion
| if e then e else e Test
| new 〈e; I; r〉 Allocation
| !e Dereferencing
| e := e Assignment
| pack e Closing boxes
| unpack e Opening boxes

Values:
v ::= c Constants
| p : 〈τ〉 Pointers

Types:
τ ::= unit | bool | · · · Base types
| 〈τ〉 Pointers

Environments:
∆ ::= ε |∆,x : τ Typing
Γ ::= ε | Γ, p = 〈e; I; r〉2 Memories
2 ::= ◦ | × | ⊗ Box state

Fig. 1. Core language syntax

We do not specify the logic used to write invariants. We only need to be able to
know if an invariant holds, given the state of the memory. We assume that modifying a
pointer which is not a rep of a pointer p cannot break the invariant of p.

As an example, the following expression E has one free variable: x which is an
integer pointer. It returns a new pointer which has an invariant: it is greater than x. The
invariant is a function which takes its future associated pointer as an argument (here p).

E = let y = new 〈0;λp. (!p >!x);x〉 in y :=!x+ 1; pack y; y

Note that the invariant does not necessarily hold initially, as x might be stricly greater
than 0. This is allowed because the pointer is initially open.

This example also shows that in our core language, invariants may be associated
with any pointer and may depend on any pointers. This is more general than the owner-
ship system of Spec#where the reps of an object are defined in its type and are restricted
to its fields.

Typing Types can be base types, such as unit or bool, or references. Their syntax is
defined in Fig. 1. The typing environment ∆ is a set of types associated to variable
names.

Typing rules are defined in Fig. 2. Type(c) is the base type for constant c. ∆(x) is
the type of x in the typing environment ∆. Note that rules PACK and UNPACK are only
defined when the expression has a pointer type.

Our example expression E can be typed:

x : 〈int〉 ` E : 〈int〉

Semantics We define a small-step semantics for our core language.→ is a relation on
states, and states are couples of a memory and an expression. The following:

Γ1; e1 → Γ2; e2

should be read: “e1 in memory Γ1 reduces to e2 in memory Γ2”.

∆ ` c : Type(c)
CONST

∆ ` (p : 〈τ〉) : 〈τ〉
POINTER

∆ ` x : ∆(x)
VAR

∆ ` e1 : τ1 ∆,x : τ1 ` e2 : τ2

∆ ` let x = e1 in e2 : τ2
LET

∆ ` e1 : unit ∆ ` e2 : τ

∆ ` e1; e2 : τ
SEQ

∆ ` e1 : bool ∆ ` e2 : unit

∆ ` while e1 do e2 : unit
WHILE

∆ ` e1 : bool ∆ ` e2 : τ ∆ ` e3 : τ

∆ ` if e1 then e2 else e3 : τ
IF

∆ ` e : 〈τ〉
∆ `!e : τ

ACCESS
∆ ` e1 : 〈τ〉 ∆ ` e2 : τ

∆ ` e1 := e2 : unit
ASSIGN

∆ ` e : 〈τ〉
∆ ` pack e : unit

PACK

∆ ` e : 〈τ〉
∆ ` unpack e : unit

UNPACK
∆ ` e : τ

∆ ` new 〈e; I; r〉 : 〈τ〉
NEW

Fig. 2. Core language typing

Γ ; let x = v in e→ Γ ; e[v/x] (1)

Γ ; (unit; e)→ Γ ; e (2)

Γ ; while e1 do e2 → Γ ; if e1 then (e2; while e1 do e2) else unit (3)

Γ ; if true then e1 else e2 → Γ ; e1 (4)

Γ ; if false then e1 else e2 → Γ ; e2 (5)

Γ ; new R→ Γ, p = R◦; p (where p is fresh in Γ) (6)

Γ, p = 〈v; I; r〉2; !p→ Γ, p = 〈v; I; r〉2; v (7)

Γ, p = 〈v1; I; r〉◦; p := v2 → Γ, p = 〈v2; I; r〉◦; unit (8)

Γ,

„
p = 〈v; I; p1 · · · pn〉◦
p1 = R×1 , · · · , pn = R×n

«
; pack p→

Γ,

„
p = 〈v; I; p1 · · · pn〉×
p1 = R⊗1 , · · · , pn = R⊗n

«
; unit

(If I(Γ) holds) (9)

Γ,

„
p = 〈v; I; p1 · · · pn〉×
p1 = R⊗1 , · · · , pn = R⊗n

«
; unpack p→

Γ,

„
p = 〈v; I; p1 · · · pn〉◦
p1 = R×1 , · · · , pn = R×n

«
; unit

(10)

We omitted rules concerning evaluation order.

Fig. 3. Core language semantics

The→ relation is the smallest fixpoint of the rules given in Fig. 3, plus some context
rules which define the evaluation order (for example, the test cannot be reduced if its
condition has not been reduced already). We suppose that the substitution used when
reducing let-bindings does not capture variables.

Rules for let-binding (1), sequence (2), loop (3) and test (4, 5) are easy to read.
The interesting rules are the ones for allocation (6), pointer dereferencing (7) or assign-
ment (8), packing (9) and unpacking (10), as they can read and write in memory. The
memory is a set of allocated pointers with their value, their invariant and their reps (the
pointers their invariant may depend on). Syntax for memories Γ is given in Fig. 1; they
are maps from pointers to their values, invariant and reps. Each pointer can be open (◦),
closed (×), or owned (⊗); this is also stored in memory Γ .

To allocate a new pointer, one first needs a fresh pointer p. This pointer is entered
in memory with its state R which contains its value, its invariant and the pointers it
depends on. Initially, the pointer is open.

Pointer access and modification are just reading or modifying the value associated
to the pointer in memory. Access can be done whatever the state of the pointer is, but
assignment can only be done on open pointers.

Closing a pointer p with pack does not only change the state of p from ◦ (open) to
× (closed); it also changes the state of its reps from× to⊗ (owned). This prevents them
from being opened and modified. Opening a pointer with unpack is similar, except that
the pointer state goes from × to ◦ and the state of its reps goes from ⊗ to ×. Packing
can only be done if the invariant holds.

Our example expression E reduces as follows, in a memory where pointer x has
value 42 (omitting some trivial reductions):

x = 〈42; true; ∅〉× let y = new 〈0;λp. !p >!x;x〉 in · · ·
x = 〈42; true; ∅〉×, p = 〈0; !p >!x;x〉◦ let y = p in y :=!x+ 1; pack y; y
x = 〈42; true; ∅〉×, p = 〈0; !p >!x;x〉◦ p :=!x+ 1; pack p; p
x = 〈42; true; ∅〉×, p = 〈43; !p >!x;x〉◦ pack p; p
x = 〈42; true; ∅〉⊗, p = 〈43; !p >!x;x〉× p

Safety The type of an expression does not change when the expression is reduced.
As usual, we prove this subject-reduction property by induction on the length of the
reduction, by showing that if a typing tree exists before the reduction, then we can
construct a typing tree for the reduced expression.

Theorem 1 (subject reduction). If ∆ ` e1 : τ and Γ1; e1 →? Γ2; e2 then ∆ ` e2 : τ

A memory is consistent if all closed pointers verify their invariants, all reps pointers
of all closed pointers are owned, and all owned pointers have a unique owner.

Definition 1 (Memory Consistency and Pointer State). A memory Γ is valid, written
Valid(Γ), when:

– for all 〈v; I; p1 · · · pn〉2 in Γ where 2 ∈ {×,⊗}, I holds and for all i, the state of
pi in Γ is ⊗;

– for all p = R⊗ in Γ , there is a unique 〈v; I; r〉2 in Γ such that 2 ∈ {×,⊗} and
p ∈ r.

The safety of the ownership system is given by the following property: the memory
stays consistent when executing the program.

Theorem 2 (Ownership Safety). If Valid(Γ1) and Γ1; e1 →? Γ2; e2 then Valid(Γ2)

The proof is basically the same as the one of Barnett et al. [2] but adapted to our simpler
core language.

Proof. We prove Theorem 2 by induction on the length of the reduction, by proving
that all reduction rules that modify memory Γ maintain Valid(Γ).

– Allocation only adds an open pointer to the memory. Because this pointer is fresh, it
is unique, and it cannot appear in the invariant of a closed pointer, so these invariants
still hold. The state of already existing pointers is not modified.

– Assigning a new value to a pointer p can only be done if p is open. All invariants I
that depend on p are associated to pointers p′ which have p as a rep. Because p is
open, p′ must be open too, so the assignment cannot break memory consistency.

– Packing closes a pointer p and changes the state of its reps to⊗. So the only pointer
which was open and becomes closed or owned is p. Its invariant must hold for the
reduction to apply, and all the state of all its reps is correctly ⊗. These reps had
no closed owner before, otherwise their state would have been ⊗. Now they have a
unique owner: p.

– There is no new closed or owned box after unpacking. However, the unpacked
pointer p is now open. Let p′ be a pointer which was owned by p. It was a rep of
p, so its state is now ×. The property of the unicity of the owner only applies for
boxes whose state is ⊗, so it still holds.

4 Pointer Arithmetic

This section shows how to extend our core language with pointer arithmetic. This can
also be used to model arrays.

Pointer Shifting and Difference We assume an operation ⊕, called shift, which takes
a pointer and an integer offset and returns a pointer. This operation should verify the
following properties:

p⊕ i = p ⇐⇒ i = 0
(p⊕ i)⊕ j = p⊕ (i+ j)

We also assume an operation 	 which takes two pointers and return an integer offset.
This operation should verify the following property:

p′ 	 p = i ⇐⇒ p′ = p⊕ i

Note that the axiomatisation of⊕ does not necessarily mean that all pointers are related
through an offset shift. This means that 	 does not have to be defined for all pairs of
pointers. For instance, 	 allows to model pointer difference in C programs. The ANSI
semantics of C specifies that the result is undetermined if the two pointers are not in the
same block.1 This property will be useful when defining arrays (see Sect. 4).

1 In the Why platform, pointer difference generates a proof obligation requesting that the two
pointers are in the same block.

The syntax of expressions is extended to handle the ⊕ and 	 operations. Typing is
done with the following rules:

∆ ` p : 〈τ〉 ∆ ` o : int
∆ ` p⊕ o : 〈τ〉

∆ ` p1 : 〈τ〉 ∆ ` p2 : 〈τ〉
∆ ` p1 	 p2 : int

The semantics of the syntax constructions ⊕ and 	 is simply to reduce into the value
returned by the respective operations, without changing the memory.

Allocation Pointer shifting can be used to build new pointers, but nothing ensures that
these pointers have been allocated. If they are not in memory, the access reduction rule
cannot be applied.

We extend allocation by adding an expression n of type int in brackets. This integer
is the size of the allocated block. The invariant is now parameterized by the offset of
the pointer. The semantics of new is defined by the following reduction rule:

Γ ; new R[n]→ Γ, p = R(0), p⊕ 1 = R(1), · · · , p⊕ n− 1 = R(n− 1); p

whereR denotes λo. 〈v; I(o); r(o)〉 and p is a fresh pointer such that p⊕1 · · · p⊕(n−1)
are also fresh in Γ .

This extended new can be used to allocate several pointers at the same time. These
pointers are all accessible by shifting the pointer returned by the allocation, and their
invariants can be different.

Arrays The pointer arithmetic extension can be used to build arrays. For example, the
following expression allocates a new array of positive integers:

new λo. 〈0;λp. !p ≥ 0; ∅〉[n]

However, the invariant of this array is split into each cell, which is handled sepa-
rately. A better solution would be to have one single invariant for the whole array:

let p = new 〈0; true; ∅〉[n] in
new 〈p; (λp′. !p′ ≥ 0); p⊕ [0..(n− 1)]〉

Note that the size of the rep pointer set depends on n. Another solution is to use the set
constructor p[?] meaning: “all valid shifts of p”.

This supposes that the cells of an array are exactly the valid shifts of its first cell.
This is possible in our extension thanks to the unconstrained operator ⊕ which doesn’t
have to link all pointers together; otherwise there could be only one array in the whole
program.

For pratical purposes, it is also handy to add packing and unpacking operations on
blocks p[?] of pointers. Without them, the user has to write a loop everytime an array is
opened or closed.

5 Using Invariants in Proofs

We assume that we can statically determine the invariant of a pointer. This strong re-
striction can be obtained by typing: the user defines a finite set of invariants and the
invariant of a pointer is added to its type. In Spec# or in Jessie, all objects of the same
class or structure have the same invariant.

Problem Let’s assume that exampleE in section Sect. 3 has !p >!x as a post-condition
P . The generated proof obligation looks like (universal quantifications are omitted):

Γ x
1 = (x = 〈42; true; ∅〉) ⇒ Sx

1 = (x = ×) ⇒
Γ p

1 = (p = 〈0; !p >!x;x〉) ⇒ Sp
1 = (p = ◦) ⇒

Γ p
2 = store(Γ p

1 , p, 43) ⇒ Sx
2 = store(Sx

1 , x,⊗) ⇒
Sp

2 = store(Sp
1 , p,×) ⇒ select(Γ p

2 , p) > select(Γ x
1 , x)

where store and select are logic functions to, respectively, change and read the value of
a pointer in a memory map. For example, !p becomes select(Γ, p) in the logic, where Γ
is the current memory. Note how memory separation such as the “component-as-array”
model [3] or even finer separation using regions [10] allow to split Γ into several maps.
Here, we separated pointers x and p. We also separated values and states of pointers
using two maps: Γ and S respectively.

One way of proving P is to read the values of x and p using the hypotheses about
Γ x

1 and Γ p
2 . In this example, this is trivial; but usually it is not so simple. A much easier

solution would be to use the last hypothesis (p is closed) to apply the invariant of p. To
do so we need to apply Valid . But one cannot just add an axiom such as:

∀Γ, Valid(Γ) (11)

This axiom is inconsistent; the quantification on Γ should be restricted to memories that
are actually produced by the program. In Spec# this is done using a predicate called
IsHeap. The VCG adds instances of this predicate in the proof-obligation hypotheses
and (11) becomes:

∀Γ, IsHeap(Γ) ⇒ Valid(Γ) (12)

With memory separation, we cannot instanciate IsHeap on all memory parts, oth-
erwise one could prove inconsistent instances of Valid such as Valid(Γ x

1 , Γ
p
1 , S

x
2 , S

p
2)

which implies 0 > 42.

Solution In Jessie, we choose to bypass the use of IsHeap: the Valid predicate is in-
stantiated everytime the user might need it, and this instantiation is added as an assump-
tion in the hypotheses of the obligations the user has to prove. We add the following
hypotheses to the proof obligation for example E:

Valid(Γ x
1 , S

x
1) Valid(Γ x

1 , S
x
1 , Γ

p
1 , S

p
1)

Valid(Γ x
1 , S

x
1 , Γ

p
2 , S

p
1) Valid(Γ x

1 , S
x
2 , Γ

p
2 , S

p
2)

In theory, the user might need the Valid predicate to be instantiated everytime the
memory is modified, but this would pollute proof obligations with too many hypotheses.
In practice, we only instantiate Valid at the beginning of function bodies and loops, and
when the memory is modified. It is instanciated on the needed memory parts only.

Another possibility is to instantiate Valid only at the beginning of functions; the
user can then deduce the other instances of Valid . However, proving Valid can some-
times be quite difficult. Another drawback would be that we would lose some separa-
tion properties. Thanks to memory separation, memory can be split into (Γ, S) where
Γ contains pointer values, and S contains pointer states (◦, × or ⊗). For example:

let x = new 〈1;λp. !p > 0; ∅〉 in e

A theorem prover can easily deduce that !x > 0 if it knows that e returns x packed, but
only if Valid has been added as an assumption after e.

Well-foundedness We are using Valid to prove some proof obligations, but Valid
only holds if the proof obligations have been proven. In this section, we show that this
is well-founded.

The proof obligations ensure, among other things, that an expression e1 which is
not a value reduces without errors:

If Valid(Γ1) then there exist Γ2, e2 such that Γ1; e1 → Γ2; e2 (13)

In particular, this means that invariants hold before packing, assigned pointers are open,
and so on.

We apply Theorem 2 (which does not depend on proof obligations) to extend (13):

If Valid(Γ1) then there exist Γ2, e2 such that Γ1; e1 → Γ2; e2 and Valid(Γ2) (14)

By applying (14) inductively, we show our final theorem:

Theorem 3. All instances of Valid introduced as assumptions are correct.

6 Example

This example is inspired by some Java code due to Müller [13]. We suppose an integer
array t of size n+ 1. The following Java code counts the number of positive integers in
the array, and then copies them into a new array u:

int i, j, count = 0;
for (i=0; i < t.length; i++)

if (t[i] > 0) count++;
int u[] = new int[count];
for (i=0, j=0; i < t.length; i++)

if (t[i] > 0) u[j++] = t[i];

We can encode this in our core language:

let i = new 〈0; true; ∅〉 in
let j = new 〈0; true; ∅〉 in
let count = new 〈0; (λp. !p = Card{k | 0 ≤ k ≤ n ∧ !(t⊕ k) > 0}); t⊕ [0..n]〉 in
while !i ≤ n do

(if !(t⊕!i) > 0 then count :=!count+ 1;
i :=!i+ 1);

pack count;
let u = new 〈0; true; ∅〉[!count] in
i := 0;
while !i ≤ n do

(if !(t⊕!i) > 0 then (u⊕!j :=!(t⊕!i); j :=!j + 1);
i :=!i+ 1)

Pointer count has an invariant saying that its content is the number of strictly positive
integers in t. We prove it when packing count using a loop invariant on the first loop.

This illustrates several features of our core language: invariants on any pointer and
not just objects, pointer arithmetic, and memory separation support. Memory separation
is key to prove the safety of the accesses to u in the second loop. Indeed, j < count is
a loop invariant; but to show it we need to know that t is not modified by updates to u.
Memory separation gives this for free by separating t and u [10].

To show that j < count we also need the invariant of count, given by instanciating
the following predicate:

Valid(Γ t, Γ count, St, Scount) ≡
∀count, select(Scount, count) ∈ {×,⊗} ⇒
select(Γ count, count) = Card{k | 0 ≤ k ≤ n ∧ select(Γ t, (t⊕ k)) > 0}

This predicate is instanciated using the memory parts corresponding to the last time
count was modified, i.e., when it was packed. We only show the part of the predicate
needed to deduce the invariant of count.

7 Conclusion

We introduced a small language with pointers, an ownership system and invariants. It
was shown to be safe, and then extended with pointer arithmetic. As far as we know, this
work is the first attempt to formalize an ownership system with pointer arithmetic, and
thus applicable to the C language, although the VCC tool [16] implements a solution.
This extension offers multiple ways to specify array invariants: they can be split in each
cell, or a pointer on the array can be allocated with a global invariant for the array.

Our core language could be extended with several other features. In particular,
pointers could contain extensible records, which would model objects. As for pointer
arithmetic, this is mostly independent from the ownership system itself. Our language
is an attempt to generalize the Spec# methodology: invariants are not limited to object
fields and may depend on any pointer. This simplifies formal reasoning, and can be used

in languages without objects, or with invariants which are not necessarily defined for a
whole class.

We also showed how the safety properties of the ownership system can be instan-
tiated to be used when proving the proof obligations of the program. This was already
done with simple memory models, although to the best of our knowledge, formalizing
this method and proving its soundness is new. Moreover, our solution can be used when
the memory model features memory separation, as in the Jessie language in which is
was implemented.

Another lead for research could be the separation properties of the ownership system
shown in Sect 5. Invariant properties on the whole memory can be deduced from a small
part of the memory.

Acknowledgements Thanks to Claude Marché, Yannick Moy, to all the members of the
ProVal team, and to all anonymous reviewers for their invaluable remarks and advice.

References

1. A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local reasoning
about global invariants. In 22nd European Conference on Object-Oriented Programming
(ECOOP’08), Paphos, Cyprus, July 2008.

2. M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verification of
object-oriented programs with invariants. Journal of Object Technology, 3(6):27–56, June
2004.

3. R. Bornat. Proving pointer programs in Hoare logic. In Mathematics of Program Construc-
tion, pages 102–126, 2000.

4. S. Boulmé and M.-L. Potet. Interpreting invariant composition in the B method using the
Spec# ownership relation: a way to explain and relax B restrictions. In J. Julliand and
O. Kouchnarenko, editors, B 2007, volume 4355 of Lecture Notes in Computer Science.
Springer, 2007.

5. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer, 2004.

6. W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology, 4(8):5–32, 2005.

7. E. W. Dijkstra. A discipline of programming. Series in Automatic Computation. Prentice
Hall Int., 1976.

8. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deductive program
verification. In W. Damm and H. Hermanns, editors, 19th International Conference on Com-
puter Aided Verification, Lecture Notes in Computer Science, Berlin, Germany, July 2007.
Springer.

9. C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580 and 583, Oct. 1969.

10. T. Hubert and C. Marché. Separation analysis for deductive verification. In Heap Anal-
ysis and Verification (HAV’07), Braga, Portugal, Mar. 2007. http://www.lri.fr/

˜marche/hubert07hav.pdf.
11. I. T. Kassios. Dynamic frames: Support for framing, dependencies and sharing without

restrictions. In J. Misra, T. Nipkow, and E. Sekerinski, editors, 14th International Symposium
on Formal Methods (FM’06), volume 4085 of Lecture Notes in Computer Science, pages
268–283, Hamilton, Canada, 2006.

12. G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Formal Aspects of Computing, 2007.

13. P. Müller. Specification and verification challenges. Exploratory Workshop: Challenges in
Java Program Verification, Nijmegen, The Netherlands, Sept. 2006. http://www.cs.
ru.nl/˜woj/esfws06/slides/Peter.pdf.

14. J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In 17h Annual
IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc. Press, 2002.

15. J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for java-like programs
based on dynamic frames. In Fundamental Approaches to Software Engineering (FASE’08),
Budapest, Hungary, Apr. 2008.

16. J. S. Wolfram Schulte, Songtao Xia and F. Piessens. A glimpse of a verifying c compiler.

