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Synopsis

• Abstract polymorphic variants

• Unions

• Motivations for unions

• Checking compatibilities

1



Abstract polymorphic variants

2



Variants

Variants are sum types with labels.

type expr =

Int of int

| Plus of expr * expr

let example1 = Plus(Int 27, Int 42)

They have to be declared first.
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Polymorphic Variants

Polymorphic Variants types are inferred.

let example2 = ‘Plus(‘Int 27, ‘Int 42)

val example2 :

[> ‘Plus of [> ‘Int of int ] * [> ‘Int of int ] ]

This means example2 has at least the label ‘Plus.
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Subsumption

One can instantiate polymorphic variants.

let example3 = ‘A

val example3: [> ‘A ] = ‘A

(example3 : [ ‘A | ‘B | ‘C of int ])

- : [ ‘A | ‘B | ‘C of int ] = ‘A
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Abstract Polymorphic Variants

Use the private keyword.

module type Expr = sig

type expr = private [> ‘Plus of expr * expr ]

val un: expr

val eval: expr -> int

end

module IntExpr: Expr = struct

type expr = [ ‘Int of int | ‘Plus of expr * expr ]

let un = ‘Int 1

let rec eval = ...

end
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Abstraction

IntExpr.eval (‘Plus(IntExpr.un, IntExpr.un))

- : int = 2

IntExpr.eval (‘Int 10)

IntExpr.eval (‘Int 10)

^^^^^^^^^

This expression has type [> ‘Int of int ] but is here used

with type

IntExpr.expr
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Unions
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Unions

Concrete polymorphic variants can be used in other definitions.

type intexpr = [ ‘Int of int ]

type boolexpr = [ ‘Bool of bool ]

type expr = [ intexpr | boolexpr ]

type expr = [ ‘Bool of bool | ‘Int of int ]

The expansion is done immediatly.
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Unions of abstract types

The following code raises an error at compilation.

module A: sig

type intexpr = private [> ]

type boolexpr = private [> ]

end = (...)

type expr = [ A.intexpr | A.boolexpr ]

Indeed, there is no way to check whether this union is safe, as not all

labels are known.
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The actual implementations of intexpr and boolexpr could be incom-

patible.

module A = struct

type intexpr = [ ‘Item of int ]

type boolexpr = [ ‘Item of bool ]

end

type expr = [ A.intexpr | A.boolexpr ]

type expr = [ ‘Item of int | ‘Item of bool ]

expr would associate both int and bool to ‘Item.

11



Summary

• Polymorphic variants

– No declaration, no collision on labels

– Enhanced modularity

– Locating errors is harder

• Private types

– Semi-abstraction

– Great for functors

– No union
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Motivation for unions

Building a language in a modular fashion. We start be defining small
pieces of the language.

module type Expr = sig

type t = private [> ]

end

module Int = struct

type t = [ ‘Int of int ]

end

module Bool = struct

type t = [ ‘Bool of bool ]

end
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We then define a functor which combines languages.

module Mix(A: Expr)(B: Expr) = struct

type t = [ A.t | B.t ]

end

Note how t makes an union of two abstract polymorphic variants.

Now, as both Int and Bool have the signature Expr, we can combine

them in a single language.

module IntBool = Mix(Int)(Bool)
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Functions using these abstract types could also be defined.

module type Expr = sig

type t = private [> ]

val show: t -> string

end

module Int = struct

type t = [ ‘Int of int ]

let show = function ‘Int i -> string_of_int i

end

module Bool = struct

type t = [ ‘Bool of bool ]

let show = function ‘Bool b -> string_of_bool b

end
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The operator #, which already exists for concrete polymorphic vari-
ants, could then be used.

module Mix(A: Expr)(B: Expr): Expr = struct

type t = [ A.t | B.t ]

let show = function

#A.t as x -> A.show x

| #B.t as x -> B.show x

end

module IntBool = Mix(Int)(Bool)

IntBool.show (‘Int 1)^", "^IntBool.show (‘Bool true)

- : string = "1, true"
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Compatibility information

The idea is to add compatibility information.

module A: sig

type intexpr = private [> ]

type boolexpr = private [> ]~[ intexpr ]

end = (...)

type expr = [ A.intexpr | A.boolexpr ]

A.boolexpr is said to be compatible with A.intexpr, allowing expr to

be defined.
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Other kinds of compatibilities:

type t1 = private [> ]~[ ‘Shared of int ]

type u1a = [ t1 | ‘Shared of int ]

type u1b = [ t1 | ‘Shared of bool ] (* error *)

type t2 = private [> ]~[ ~‘Shared ]

type u2a = [ t2 | ‘Shared of int ]

type u2b = [ t2 | ‘Shared of bool ]

type t3 = private [> ]~[ ~t ]

type u3 = [ t3 | t ]
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Summary

• Unions between private types

– Compatibility information on private type definitions

– Extension of #t in pattern-matching

• Problems

– Checking compatibilities

– Preserving type inference
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Checking compatibilities
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Validity test

For each definition such as:

type t = private [> P1 | ... | Pn ]~[ C1 | ... | Cn ]

1. Check if Pi � Pj for all i, j

2. Check if Pi � Cj for all i, j

3. Add t and its definition to an environment Θ

21



Compatibility relation (LL)

Checking the compatibility of two labels is easy:

l 6= l′ or τ = τ ′

Θ ` l of τ � l′ of τ ′
LL
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Compatibility relation (TT)

Two types are compatible if one uses the other:

Θ ` t©∈ t′

Θ ` t� t′
TT1

or if there is an explicit compatibility:

Θ `?t©∈ t′

Θ ` t� t′
TT1
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Compatibility relation (LT)

Similarly to Type / Type compatibility:

Θ ` l of τ ©∈ t

Θ ` l of τ � t
LT1

Θ `?l of τ ©∈ t

Θ ` l of τ � t
LT2

but absence information can be used too:

¬l ∈ Θ(t)

Θ ` l of τ � t
LT3
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Consider the following example:

type t = private [> ]~[ ‘A of int | ‘A of bool ]

The only way t can be compatible with two different types for ‘A is

if t doesn’t use ‘A.

This leads to:

Θ `?l of τ1 ©∈ t Θ `?l of τ2 ©∈ t τ1 6= τ2
Θ ` l of τ � t

LT4
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Inheritance relation

A©∈ B when B inherits A.

This is read from the environment.

Another option is to expand type names before checking compatibil-

ities.
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Inheritance: base case

R ∈ Θ(t)

Θ ` R©∈ t
In1
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Inheritance of presence information

Example:

type t = private [> ‘A of int ]

type u = private [> t ]

u inherits ‘A of int.

t ∈ Θ(u) Θ ` A©∈ t

Θ ` A©∈ u
In2
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Inheritance of compatibilities

Example:

type t = private [> ‘A of int ]

type u = private [> ]~[ t ]

u is compatible with ‘A of int.

?t ∈ Θ(u) Θ ` A©∈ t

Θ `?A©∈ u
In3
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Conclusion

We proposed an extension to private polymorphic variants to handle

unions, using compatibility annotations.

We modeled types and proved our compatibility relation is sound and

complete w.r.t. our model.

A prototype implementation is available as a branch of OCaml.
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