Unions of Abstract Polymorphic Variants

Romain Bardou
Internship in Nagoya University (Japan), with Jacques Garrigue
March — August 2006

Synopsis

Abstract polymorphic variants

Unions

Motivations for unions

Checking compatibilities

Abstract polymorphic variants

Variants

Variants are sum types with labels.

type expr =
Int of int
| Plus of expr * expr

let examplel = Plus(Int 27, Int 42)

They have to be declared first.

Polymorphic Variants

Polymorphic Variants types are inferred.

let example2 = ‘Plus(‘Int 27, ‘Int 42)

val example2 :
[> ‘Plus of [> ‘Int of int] * [> ‘Int of int]]

This means example2 has at least the label ‘Plus.

Subsumption

One can instantiate polymorphic variants.

let example3d = ‘A
val example3: [> ‘A] = ‘A
(example3 : [‘A | ‘B | ‘C of int 1)

-+ [‘A| ‘B | ‘C of int] = ‘A

Abstract Polymorphic Variants

Use the private keyword.

module type Expr = sig
type expr = private [> ‘Plus of expr * expr |
val un: expr
val eval: expr -> int
end
module IntExpr: Expr = struct
type expr = [‘Int of int | ‘Plus of expr * expr]
let un = ‘Int 1
let rec eval = ...
end

Abstraction

IntExpr.eval (‘Plus(IntExpr.un, IntExpr.un))
- : int = 2
IntExpr.eval (‘Int 10)

IntExpr.eval (‘Int 10)

AN AAAAAAAAN

This expression has type [> ‘Int of int] but is here used
with type
IntExpr.expr

Uunions

unions

Concrete polymorphic variants can be used in other definitions.

type intexpr = [‘Int of int]
type boolexpr = [‘Bool of bool]
type expr = [intexpr | boolexpr]

type expr = [‘Bool of bool | ‘Int of int]

The expansion is done immediatly.

Unions of abstract types

T he following code raises an error at compilation.

module A: sig
type intexpr = private [>]
type boolexpr = private [>]
end = (...)

type expr = [A.intexpr | A.boolexpr]

Indeed, there is no way to check whether this union is safe, as not all

labels are known.
10

The actual implementations of intexpr and boolexpr could be incom-
patible.

module A = struct
type intexpr = [‘Item of int]
type boolexpr = [‘Item of bool]
end

type expr = [A.intexpr | A.boolexpr]

type expr = [‘Item of int | ‘Item of bool]

expr would associate both int and bool to ‘Item.

11

Summary

e Polymorphic variants

— NoO declaration, no collision on labels
— Enhanced modularity
— Locating errors is harder

e Private types

— Semi-abstraction
— Great for functors
— NO union

12

Motivation for unions

Building a language in a modular fashion. We start be defining small
pieces of the language.

module type Expr = sig

type t = private [>]
end
module Int = struct

type t = [‘Int of int]
end
module Bool = struct

type t = [‘Bool of bool]
end

13

We then define a functor which combines languages.

module Mix(A: Expr) (B: Expr) = struct
type t = [A.t | B.t]
end

Note how t makes an union of two abstract polymorphic variants.

Now, as both Int and Bool have the signature Expr, we can combine
them in a single language.

module IntBool = Mix(Int) (Bool)

14

Functions using these abstract types could also be defined.

module type Expr = sig
type t = private [>]
val show: t -> string

end

module Int = struct
type t = [‘Int of int]
let show =

end

function ‘Int i -> string_of_int i

module Bool = struct

type t = [‘Bool of bool]

let show = function ‘Bool b -> string_of_bool b
end

15

The operator #, which already exists for concrete polymorphic vari-
ants, could then be used.

module Mix(A: Expr) (B: Expr): Expr = struct
type t = [A.t | B.t]
let show = function
#A.t as x -> A.show x
| #B.t as x -> B.show x
end

module IntBool = Mix(Int) (Bool)
IntBool.show (‘Int 1)°", "“IntBool.show (‘Bool true)

- : string = "1, true"

16

Compatibility information

The idea is to add compatibility information.

module A: sig

type intexpr = private [>]

type boolexpr = private [>]7[intexpr |
end = (...)

type expr = [A.intexpr | A.boolexpr]

A.boolexpr is said to be compatible with A.intexpr, allowing expr to

be defined.
17

Other kinds of compatibilities:

type tl = private [> 17[‘Shared of int]
type ula = [t1 | ‘Shared of int]
type ulb = [t1 | ‘Shared of bool] (* error *)

type t2 = private [> 17 ["‘Shared]
type u2a = [t2 | ‘Shared of int]
type u2b = [t2 | ‘Shared of bool]

type t3 = private [>]°["t |
type u3 = [t3 | t]

18

Summary

e Unions between private types

— Compatibility information on private type definitions
— EXxtension of #t in pattern-matching

e Problems

— Checking compatibilities
— Preserving type inference

19

Checking compatibilities

20

Validity test

For each definition such as:

type t = private [> P1 | ... | Pn J7[C1 |

1. Check if Pi ©® Pj for all ¢, 3

2. Check if Pi ® Cj for all 7, 3

3. Add t and its definition to an environment ©

| Cn]

21

Compatibility relation (LL)

Checking the compatibility of two labels is easy:

L=l or =71

LL
OQFlof TOU of 7/

22

Compatibility relation (TT)

Two types are compatible if one uses the other:
OFtet
© T
QFtOt
or if there is an explicit compatibility:
Or?7tet
OFtoOt

T1

TT1

23

Compatibility relation (LT)

Similarly to Type / Type compatibility:
© [of t © 7] of t
of T© LT1 of T© L

T2
OFlof TOL OQFlof TGOt
but absence information can be used too:
=l t
€O | 13

OFlof TGOt

24

Consider the following example:

type t = private [> 17[‘A of int | ‘A of bool]

The only way t can be compatible with two different types for ‘A is
if t doesn’t use ‘A.

This leads to:
OF? of Mt OF?of m©t 11 F 7
@OFlof TOL

L T4

25

Inheritance relation

A © B when B inherits A.
This is read from the environment.
Another option is to expand type names before checking compatibil-

ities.

26

Inheritance: base case

R € O(t) In1

OFRO

27

Inheritance of presence information

Example:

type t =
type u =

u inherits ‘A

private [> ‘A of int]

private [> t]

of int.

t € ©(u) @I—A@tIn

OFABG u

2

28

Inheritance of compatibilities

Example:
type t = private [> ‘A of int]
type u = private [>]°[t]

u IS compatible with ‘A of int.

7t € ©(u) @I—A@tln
OF?AQu

3

29

Conclusion

We proposed an extension to private polymorphic variants to handle
unions, using compatibility annotations.

We modeled types and proved our compatibility relation is sound and
complete w.r.t. our model.

A prototype implementation is available as a branch of OCaml.

30

