
Unions of Abstract Polymorphic Variants

Romain Bardou

Internship in Nagoya University (Japan), with Jacques Garrigue

March – August 2006

Synopsis

• Abstract polymorphic variants

• Unions

• Motivations for unions

• Checking compatibilities

1

Abstract polymorphic variants

2

Variants

Variants are sum types with labels.

type expr =

Int of int

| Plus of expr * expr

let example1 = Plus(Int 27, Int 42)

They have to be declared first.

3

Polymorphic Variants

Polymorphic Variants types are inferred.

let example2 = ‘Plus(‘Int 27, ‘Int 42)

val example2 :

[> ‘Plus of [> ‘Int of int] * [> ‘Int of int]]

This means example2 has at least the label ‘Plus.

4

Subsumption

One can instantiate polymorphic variants.

let example3 = ‘A

val example3: [> ‘A] = ‘A

(example3 : [‘A | ‘B | ‘C of int])

- : [‘A | ‘B | ‘C of int] = ‘A

5

Abstract Polymorphic Variants

Use the private keyword.

module type Expr = sig

type expr = private [> ‘Plus of expr * expr]

val un: expr

val eval: expr -> int

end

module IntExpr: Expr = struct

type expr = [‘Int of int | ‘Plus of expr * expr]

let un = ‘Int 1

let rec eval = ...

end

6

Abstraction

IntExpr.eval (‘Plus(IntExpr.un, IntExpr.un))

- : int = 2

IntExpr.eval (‘Int 10)

IntExpr.eval (‘Int 10)

^^^^^^^^^

This expression has type [> ‘Int of int] but is here used

with type

IntExpr.expr

7

Unions

8

Unions

Concrete polymorphic variants can be used in other definitions.

type intexpr = [‘Int of int]

type boolexpr = [‘Bool of bool]

type expr = [intexpr | boolexpr]

type expr = [‘Bool of bool | ‘Int of int]

The expansion is done immediatly.

9

Unions of abstract types

The following code raises an error at compilation.

module A: sig

type intexpr = private [>]

type boolexpr = private [>]

end = (...)

type expr = [A.intexpr | A.boolexpr]

Indeed, there is no way to check whether this union is safe, as not all

labels are known.
10

The actual implementations of intexpr and boolexpr could be incom-

patible.

module A = struct

type intexpr = [‘Item of int]

type boolexpr = [‘Item of bool]

end

type expr = [A.intexpr | A.boolexpr]

type expr = [‘Item of int | ‘Item of bool]

expr would associate both int and bool to ‘Item.

11

Summary

• Polymorphic variants

– No declaration, no collision on labels

– Enhanced modularity

– Locating errors is harder

• Private types

– Semi-abstraction

– Great for functors

– No union

12

Motivation for unions

Building a language in a modular fashion. We start be defining small
pieces of the language.

module type Expr = sig

type t = private [>]

end

module Int = struct

type t = [‘Int of int]

end

module Bool = struct

type t = [‘Bool of bool]

end

13

We then define a functor which combines languages.

module Mix(A: Expr)(B: Expr) = struct

type t = [A.t | B.t]

end

Note how t makes an union of two abstract polymorphic variants.

Now, as both Int and Bool have the signature Expr, we can combine

them in a single language.

module IntBool = Mix(Int)(Bool)

14

Functions using these abstract types could also be defined.

module type Expr = sig

type t = private [>]

val show: t -> string

end

module Int = struct

type t = [‘Int of int]

let show = function ‘Int i -> string_of_int i

end

module Bool = struct

type t = [‘Bool of bool]

let show = function ‘Bool b -> string_of_bool b

end

15

The operator #, which already exists for concrete polymorphic vari-
ants, could then be used.

module Mix(A: Expr)(B: Expr): Expr = struct

type t = [A.t | B.t]

let show = function

#A.t as x -> A.show x

| #B.t as x -> B.show x

end

module IntBool = Mix(Int)(Bool)

IntBool.show (‘Int 1)^", "^IntBool.show (‘Bool true)

- : string = "1, true"

16

Compatibility information

The idea is to add compatibility information.

module A: sig

type intexpr = private [>]

type boolexpr = private [>]~[intexpr]

end = (...)

type expr = [A.intexpr | A.boolexpr]

A.boolexpr is said to be compatible with A.intexpr, allowing expr to

be defined.
17

Other kinds of compatibilities:

type t1 = private [>]~[‘Shared of int]

type u1a = [t1 | ‘Shared of int]

type u1b = [t1 | ‘Shared of bool] (* error *)

type t2 = private [>]~[~‘Shared]

type u2a = [t2 | ‘Shared of int]

type u2b = [t2 | ‘Shared of bool]

type t3 = private [>]~[~t]

type u3 = [t3 | t]

18

Summary

• Unions between private types

– Compatibility information on private type definitions

– Extension of #t in pattern-matching

• Problems

– Checking compatibilities

– Preserving type inference

19

Checking compatibilities

20

Validity test

For each definition such as:

type t = private [> P1 | ... | Pn]~[C1 | ... | Cn]

1. Check if Pi � Pj for all i, j

2. Check if Pi � Cj for all i, j

3. Add t and its definition to an environment Θ

21

Compatibility relation (LL)

Checking the compatibility of two labels is easy:

l 6= l′ or τ = τ ′

Θ ` l of τ � l′ of τ ′
LL

22

Compatibility relation (TT)

Two types are compatible if one uses the other:

Θ ` t©∈ t′

Θ ` t� t′
TT1

or if there is an explicit compatibility:

Θ `?t©∈ t′

Θ ` t� t′
TT1

23

Compatibility relation (LT)

Similarly to Type / Type compatibility:

Θ ` l of τ ©∈ t

Θ ` l of τ � t
LT1

Θ `?l of τ ©∈ t

Θ ` l of τ � t
LT2

but absence information can be used too:

¬l ∈ Θ(t)

Θ ` l of τ � t
LT3

24

Consider the following example:

type t = private [>]~[‘A of int | ‘A of bool]

The only way t can be compatible with two different types for ‘A is

if t doesn’t use ‘A.

This leads to:

Θ `?l of τ1 ©∈ t Θ `?l of τ2 ©∈ t τ1 6= τ2
Θ ` l of τ � t

LT4

25

Inheritance relation

A©∈ B when B inherits A.

This is read from the environment.

Another option is to expand type names before checking compatibil-

ities.

26

Inheritance: base case

R ∈ Θ(t)

Θ ` R©∈ t
In1

27

Inheritance of presence information

Example:

type t = private [> ‘A of int]

type u = private [> t]

u inherits ‘A of int.

t ∈ Θ(u) Θ ` A©∈ t

Θ ` A©∈ u
In2

28

Inheritance of compatibilities

Example:

type t = private [> ‘A of int]

type u = private [>]~[t]

u is compatible with ‘A of int.

?t ∈ Θ(u) Θ ` A©∈ t

Θ `?A©∈ u
In3

29

Conclusion

We proposed an extension to private polymorphic variants to handle

unions, using compatibility annotations.

We modeled types and proved our compatibility relation is sound and

complete w.r.t. our model.

A prototype implementation is available as a branch of OCaml.

30

