
Introduction to Functional Programming Using
OCaml

Romain Bardou

July 6, 2011

Introduction to Functional Programming Using OCaml 1 / 50

Introduction

There are two ways to write error-free programs;
only the third one works.

— Alan J. Perlis

Introduction to Functional Programming Using OCaml 2 / 50

let’s talk about

typing

Introduction to Functional Programming Using OCaml 3 / 50

Typing

types capture:

I invariants about variables

I design intents of the programmer

examples of such invariants:

I some variable x always contains an integer

I some variable l always contains a list

I some variable l ′ always contains a list of integers

types prevent errors such as:

I inserting a value into an integer (instead of a list)

I adding two lists together

Introduction to Functional Programming Using OCaml 4 / 50

Typing: Example

(all examples in this talk are written in OCaml)

let x: int = 5 in
let y: int = x + 10 in
let z: int list = y :: [1; 2; 3] in
...

(note: type annotations can be omitted thanks to type inference)

Introduction to Functional Programming Using OCaml 5 / 50

Typing: Example of Errors

you cannot add an integer and a list

5 + [1; 2; 3] (* type error *)

you cannot insert an integer into an integer

42 :: 69 (* type error *)

you cannot insert an integer into a list of lists of integers

let x: int list = [1; 2; 3] in
let y: int list list = [[42; 69]; [4]] in
let z: int list list = x :: y in
10 :: z (* type error *)

Introduction to Functional Programming Using OCaml 6 / 50

Typing is Done During Compilation

typing is done before the program is executed

errors are found before the program is executed

program is well-typed =⇒ whole category of errors prevented

Introduction to Functional Programming Using OCaml 7 / 50

let’s talk about

algebraic types

Introduction to Functional Programming Using OCaml 8 / 50

Richer Types

types encapsulate invariants and design intents

the richer types are, the richer the invariants

types help the programmer to structure his data

=⇒ need richer types for more complex structures

Introduction to Functional Programming Using OCaml 9 / 50

Algebraic Types: Product Types (a.k.a. Records)

type complex =

{

re: float; (* real part *)
im: float; (* imaginary part *)

}

let add_complex (x: complex) (y: complex) =

{

re = x.re +. y.re;
im = x.im +. y.im;

}

let x: complex = { re = 0.; im = 10. }

let y: float = x.re
let z = add_complex x 2 (* type error *)
let t = x.toto (* type error *)

Introduction to Functional Programming Using OCaml 10 / 50

Algebraic Types: Product Types (a.k.a. Tuples)

instead of declaring a record type, you can use tuples

let add_complex (re1, im1) (re2, im2) =

(re1 +. re2, im1 +. im2)
let x: (float * float) = (0., 10.)

let y = add_complex x 2 (* type error *)

use pattern-matching to read the components of the tuple

let ((z: float), (t: float)) = x
let (z, t) = x
let (_, _, u) = x (* type error *)

Introduction to Functional Programming Using OCaml 11 / 50

Algebraic Types: Sum Types (a.k.a. Variants)

type atom = H | He | Li | Be | B | C | N | O
type orbital = S | P | D | F

let orbital_of_atom (a: atom): (orbital * int) =

match a with
| H | Li → (S, 1)

| He | Be → (S, 2)

| B → (P, 1)

| C → (G, 2) (* type error: G not an orbital *)
| O → (P, 4)

(* type error: we forgot atom N *)

Introduction to Functional Programming Using OCaml 12 / 50

Example: The Researcher Data Structure

possible solution: using a product type

type researcher =

{

student: bool; (* true iff the researcher is a student *)
name: string;
phd_students: string list;

}

Introduction to Functional Programming Using OCaml 13 / 50

Example: The Researcher Data Structure

problem: ensure that students have no PhD students
solution: use a sum type

type researcher =

| Student of string
| Professor of string * string list

Introduction to Functional Programming Using OCaml 14 / 50

Example: The Researcher Data Structure

to read the list of PhD students, we need pattern-matching

let phd_students_of_researcher x =

match x with
| Student _ → []

| Professor (_, l) → l

ensures students always have no PhD students
ensures the programmer considers all cases

Introduction to Functional Programming Using OCaml 15 / 50

Example: Lists

let’s define our own list type!

type ’a mylist =

| Empty
| Cons of ’a * ’a mylist

let empty_list = Empty
let list_singleton = Cons ("coucou", Empty)
let list_1_2_3 = Cons (1, Cons (2, Cons (3, Empty)))

Introduction to Functional Programming Using OCaml 16 / 50

Example: Lists

compute the length of a list using a recursive function

let rec length x =

match x with
| Empty → 0

| Cons (_, rem) → 1 + length rem

note: typing prevents me from forgetting the empty case
(not the case in languages with the NULL pointer)

Introduction to Functional Programming Using OCaml 17 / 50

Polymorphism

type of function length:

’a list → int

’a can be instanciated with any type

let x = length (Cons (1, Empty))
let y = length (Cons ("salut", Cons ("toi", Empty)))

avoid code duplication, avoid errors

Introduction to Functional Programming Using OCaml 18 / 50

Types: Conclusion

encode properties of your data structure in its type
the compiler ensures you preserve the properties
you thus avoid many programming errors

algebraic types are quite expressive
can often replace the heavy object paradigm

polymorphism avoids code duplication
... and, as a consequence, error duplication

Introduction to Functional Programming Using OCaml 19 / 50

let’s talk about

side-effects

Introduction to Functional Programming Using OCaml 20 / 50

Variables Are Immutable

in OCaml, variables are immutable

let x = 1

the value of x is now 1 until the end of time

Introduction to Functional Programming Using OCaml 21 / 50

Variables Are Immutable

let x = 1

let x = 2

the first x is hidden
the second x is atually another variable
the code is comparable to:

let x_1 = 1

let x_2 = 2

Introduction to Functional Programming Using OCaml 22 / 50

References

a reference is a mutable value

let x = ref 0 in
x := 1;

x := !x + 3

Introduction to Functional Programming Using OCaml 23 / 50

Parenthesis: Initialization

must give an initial value to all variables, all references

avoids errors such as:

let x: int in (* not proper OCaml! *)
if x = 0 then (* probably an error: x is not initialized! *)

...

else
...

Introduction to Functional Programming Using OCaml 24 / 50

Mutable Records

record fields can be mutable

type complex =

{

mutable re: float;
im: float;

}

let x = { re = 0.; im = 10. } in
x.re ← 5.;

x.im ← 15.; (* type error: im is not mutable *)

Introduction to Functional Programming Using OCaml 25 / 50

References Are Mutable Records

type ’a ref =

{

mutable contents: ’a;
}

let make_ref x = { contents = x }

let get x = x.contents
let set x y = x.contents ← y

let x = make_ref 0 in
set x (get x + 5) (* x := !x + 5 *)

Introduction to Functional Programming Using OCaml 26 / 50

While Loops

compute
∑10

i=1i with a while loop

let i = ref 1 in
let sum = ref 0 in
while !i <= 10 do

sum := !sum + !i;
i := !i + 1

done

Introduction to Functional Programming Using OCaml 27 / 50

For Loops

compute
∑10

i=1i with a for loop

let sum = ref 0 in
for i = 1 to 10 do

sum := !sum + i
done

Introduction to Functional Programming Using OCaml 28 / 50

Issues With Side-Effects: Aliasing

let x = ref 0 in
let y = x in
x := 5;

what is the value of !y ?

=⇒ side-effects make it harder to reason about your program

Introduction to Functional Programming Using OCaml 29 / 50

Issues With Side-Effects: Concurrency

let x = ref 0 in
x := 5;

what is the value of !x if other programs can assign x at any time?

=⇒ side-effects are dangerous in the context of concurrency

Introduction to Functional Programming Using OCaml 30 / 50

Issues With Side-Effects: Not “Mathematical”

let i = ref 1 in
let sum = ref 0 in
while !i <= 10 do

sum := !sum + !i;
i := !i + 1

done

this is far from the mathematical definition of
∑10

i=1i

=⇒ side-effects make it harder to reason about your program

Introduction to Functional Programming Using OCaml 31 / 50

let’s talk about

functional programming

Introduction to Functional Programming Using OCaml 32 / 50

Functional Programming

the functional programming paradigm:

I no side-effects (i.e. pure programs)

I strict but rich type system

I no goto (gotos are evil)

I functions are values

brings the programming language closer to mathematics

Introduction to Functional Programming Using OCaml 33 / 50

Loops Are Recursive Functions

compute
∑n

i=1i using the functional approach

let rec sum n =

if n <= 0 then
0

else
n + sum (n - 1)

Introduction to Functional Programming Using OCaml 34 / 50

Loops Are Recursive Functions

compute
∑n

i=1i using the functional approach, again

let rec sum_aux acc n =

if n <= 0 then
acc

else
sum_aux (acc + n) (n - 1)

let sum n = sum_aux 0 n

Introduction to Functional Programming Using OCaml 35 / 50

Partial Application

let sum n = sum_aux 0 n

is equivalent to

let sum = sum_aux 0

Introduction to Functional Programming Using OCaml 36 / 50

The Type of Functions

let add a b = a + b

type of function add is

int → int → int

(read as int → (int → int))

function taking an integer argument a and returning another
function taking an integer argument b and returning integer a + b

Introduction to Functional Programming Using OCaml 37 / 50

The Type of Functions and Partial Application

example: partial application of function add

let f = add 5

type of function f is

int → int

function taking an integer argument b and returning integer 5 + b

Introduction to Functional Programming Using OCaml 38 / 50

Functions Are Values

let add a b = a + b

is actually the same as:

let add a = fun b → a + b

or as:

let add = fun a → fun b → a + b

Introduction to Functional Programming Using OCaml 39 / 50

Functions as Arguments

functions can be given as arguments to other functions

let f (g: int → int) (x: int): int =

g x + 10

let n = f (add 5) 3

let m = f (fun x → 2 * x) 3

what is the value of n and m?

Introduction to Functional Programming Using OCaml 40 / 50

Iterator: List Mapping

let rec map (f: ’a → ’b) (l: ’a list): ’b list =

match l with
| [] → []

| x :: rem → f x :: map f rem

let x = map (add 5) [1; 2; 3]

let y = map orbital_of_atom [H | N | Be | Li]

what is the value of x and y?

Introduction to Functional Programming Using OCaml 41 / 50

Iterator: List Folding

let rec fold
(f: ’a → ’b → ’a)
(a: ’a)
(l: ’a list): ’b list =

match l with
| [] → a
| x :: rem → fold f (f a x) rem

let x = fold add 0 [1; 2; 3]

what is the value of x?

Introduction to Functional Programming Using OCaml 42 / 50

Example: Sum

compute
∑n

i=1i using the functional approach, again again

let rec make_list n =

if n <= 0 then
[]

else
n :: make_list (n - 1)

let sum n = fold add 0 (make_list n)

Introduction to Functional Programming Using OCaml 43 / 50

Combinator: Function Composition

let compose f g x =

f (g x)

compute
∑n

i=1i using the functional approach, again again again

let sum = compose (fold add 0) make_list

=⇒ good combination properties

Introduction to Functional Programming Using OCaml 44 / 50

Matrix Product

recipe for a modular matrix product:

1. write a function which returns the product of two matrices

2. replace the use of * with a function argument

3. enjoy a more general polymorph product function

apply it to:

I integer multiplication * for integer matrices

I float multiplication *. for float matrices

I other operators for other algebras

Introduction to Functional Programming Using OCaml 45 / 50

Functional Programming: Conclusion

functional programming matters

I modular

I good compositional properties

I closer to a well-known language: mathematics

I less error-prone

Introduction to Functional Programming Using OCaml 46 / 50

let’s talk about

numeric computation

Introduction to Functional Programming Using OCaml 47 / 50

OCaml and Numeric Computation

available libraries for OCaml (standard library):
I various integers

I int
31 bits (32-bits processors) or 63 bits (64-bits processors)
default integers of OCaml, fast

I int32, int64
less efficient, but one more bit

I arbitrary precision integers (modules Num and Big_int)

I floats
native floats, fast under some conditions

I large arrays (module Bigarray) of various integers and floats;
any dimension (vectors, 2D matrices, 3D matrices, and more);
compatible with FORTRAN matrices

bindings for libraries of other languages (including FORTRAN)
may be written; some may already exist

Introduction to Functional Programming Using OCaml 48 / 50

Conclusion

should you use OCaml?

pros:

I less error-prone

I concise

I expressive (algebraic types, objects, modules and functors,
labels, polymorphic variants)

I scalable (modular, compositional)

I maintainable

I fast to compile

I fast to execute

cons:

I young (less available libraries and tools)

Introduction to Functional Programming Using OCaml 49 / 50

References That Might, or Might Not, Be of Interest

OCaml website (download, documentation, community contents)
http://caml.inria.fr/

John Hughes
Why Functional Programming Matters

Emmanuel Chailloux, Pascal Manoury and Bruno Pagano
Developing Applications With Objective Caml

Guy Cousineau and Michel Mauny
The Functional Approach to Programming

Jon D. Harrop
OCaml for Scientists

Introduction to Functional Programming Using OCaml 50 / 50

