Introduction to Functional Programming Using OCaml

Romain Bardou

July 6, 2011

Introduction

There are two ways to write error-free programs; only the third one works.

- Alan J. Perlis

let's talk about

typing

Typing

types capture:

- invariants about variables
- design intents of the programmer
examples of such invariants:
- some variable x always contains an integer
- some variable I always contains a list
- some variable I' always contains a list of integers
types prevent errors such as:
- inserting a value into an integer (instead of a list)
- adding two lists together

Typing: Example

(all examples in this talk are written in OCaml)
let x : int $=5$ in
let y : int $=x+10$ in
let z : int list $=y$:: [1; 2; 3] in
(note: type annotations can be omitted thanks to type inference)

Typing: Example of Errors

you cannot add an integer and a list
$5+[1 ; 2 ; 3]$ (* type error *)
you cannot insert an integer into an integer
42 :: 69 (* type error *)
you cannot insert an integer into a list of lists of integers
let x : int list $=[1 ; 2$; 3] in
let y : int list list = [[42; 69]; [4]] in
let z : int list list $=x:: y$ in
10 :: z (* type error *)

Typing is Done During Compilation

typing is done before the program is executed
errors are found before the program is executed
program is well-typed \Longrightarrow whole category of errors prevented

let's talk about algebraic types

Richer Types

types encapsulate invariants and design intents
the richer types are, the richer the invariants
types help the programmer to structure his data
\Longrightarrow need richer types for more complex structures

Algebraic Types: Product Types (a.k.a. Records)

```
type complex =
    {
    re: float; (* real part *)
    im: float; (* imaginary part *)
    }
```

let add_complex (x : complex) (y : complex) =
\{
re = x.re +. y.re;
$i m=x . i m+. y . i m ;$
\}
let x : complex $=\{$ re $=0 . ;$ im $=10$.
let y : float $=x$.re
let $\mathrm{z}=$ add_complex $\times 2$ (* type error *)
let $\mathrm{t}=\mathrm{x}$.toto (${ }^{*}$ type error ${ }^{*}$)

Algebraic Types: Product Types (a.k.a. Tuples)

instead of declaring a record type, you can use tuples
let add_complex (re1, im1) (re2, im2) = (re1 +. re2, im1 +. im2)
let x : (float $*$ float) $=$ ($0 .$, 10.)
let $\mathrm{y}=$ add_complex $\times 2$ (* type error $\left.{ }^{*}\right)$
use pattern-matching to read the components of the tuple
let $((z$: float), (t : float) $)=x$
let $(z, t)=x$
let (_, _, u) $=\times\left({ }^{*}\right.$ type error $\left.{ }^{*}\right)$

Algebraic Types: Sum Types (a.k.a. Variants)

type atom $=\mathrm{H}|\mathrm{He}| \mathrm{Li}|\mathrm{Be}| \mathrm{B}|\mathrm{C}| \mathrm{N} \mid \mathrm{O}$
type orbital $=S|P| D \mid F$
let orbital_of_atom (a: atom): (orbital * int) = match a with

$$
|\mathrm{H}| \mathrm{Li} \rightarrow(\mathrm{~S}, 1)
$$

$|\mathrm{He}| \mathrm{Be} \rightarrow(\mathrm{S}, 2)$
$\mid B \rightarrow(P, 1)$
\| $\mathrm{C} \rightarrow(\mathrm{G}, 2)$ (* type error: G not an orbital *)
| $\mathrm{O} \rightarrow(\mathrm{P}, 4)$
(* type error: we forgot atom N^{*})

Example: The Researcher Data Structure

possible solution: using a product type
type researcher =
\{
student: bool; (* true iff the researcher is a student *) name: string; phd_students: string list;
\}

Example: The Researcher Data Structure

problem: ensure that students have no PhD students
solution: use a sum type
type researcher =
| Student of string
| Professor of string * string list

Example: The Researcher Data Structure

to read the list of PhD students, we need pattern-matching
let phd_students_of_researcher x = match x with
| Student _ \rightarrow []
| Professor (_, I) \rightarrow |
ensures students always have no PhD students ensures the programmer considers all cases

Example: Lists

let's define our own list type!
type 'a mylist =
| Empty
| Cons of 'a * 'a mylist
let empty_list = Empty
let list_singleton = Cons ("coucou", Empty)
let list_1_2_3 = Cons (1, Cons (2, Cons (3, Empty)))

Example: Lists

compute the length of a list using a recursive function
let rec length $x=$ match x with

I Empty $\rightarrow 0$
| Cons (_, rem) $\rightarrow 1$ + length rem
note: typing prevents me from forgetting the empty case (not the case in languages with the NULL pointer)

Polymorphism

type of function length:

$$
\text { 'a list } \rightarrow \text { int }
$$

'a can be instanciated with any type
let $x=$ length (Cons (1, Empty))
let $\mathrm{y}=$ length (Cons ("salut", Cons ("toi", Empty)))
avoid code duplication, avoid errors

Types: Conclusion

encode properties of your data structure in its type the compiler ensures you preserve the properties
you thus avoid many programming errors
algebraic types are quite expressive can often replace the heavy object paradigm
polymorphism avoids code duplication
... and, as a consequence, error duplication
let's talk about

side-effects

Variables Are Immutable

in OCaml, variables are immutable
let $x=1$
the value of x is now 1 until the end of time

Variables Are Immutable

let $x=1$
let $x=2$
the first x is hidden
the second x is atually another variable the code is comparable to:
let $\times _1=1$
let $\times _2=2$

References

a reference is a mutable value
let $x=$ ref 0 in
x := 1;
$x:=!x+3$

Parenthesis: Initialization

must give an initial value to all variables, all references
avoids errors such as:
let x : int in (* not proper OCam!! *)
if $x=0$ then (* probably an error: x is not initialized! *)
else

Mutable Records

record fields can be mutable

```
type complex =
    {
        mutable re: float;
        im: float;
    }
let x = { re = 0.; im = 10. } in
x.re \leftarrow 5.;
x.im}\leftarrow15.; (* type error: im is not mutable *)
```


References Are Mutable Records

```
type 'a ref =
    {
        mutable contents: 'a;
    }
```

let make_ref $x=\{$ contents $=x\}$
let get $x=x$.contents
let set $x y=x$.contents $\leftarrow y$
let $x=$ make_ref 0 in
set $\times($ get $x+5)$
$\left({ }^{*} x:=!x+5^{*}\right)$

While Loops

```
compute \(\sum_{i=1}^{10} i\) with a while loop
let \(\mathrm{i}=\) ref 1 in
let sum \(=\) ref 0 in
while !i <= 10 do
    sum := !sum + !i;
    i := ! i + 1
done
```


For Loops

```
compute }\mp@subsup{\sum}{i=1}{10}i\mathrm{ with a for loop
let sum = ref 0 in
for i = 1 to 10 do
    sum := !sum + i
done
```


Issues With Side-Effects: Aliasing

let $x=$ ref 0 in
let $y=x$ in
x := 5;
what is the value of ! y ?
\Longrightarrow side-effects make it harder to reason about your program

Issues With Side-Effects: Concurrency

let $x=$ ref 0 in
x := 5;
what is the value of $!\times$ if other programs can assign \times at any time?
\Longrightarrow side-effects are dangerous in the context of concurrency

Issues With Side-Effects: Not "Mathematical"

```
let i = ref 1 in
let sum = ref 0 in
while !i <= 10 do
    sum := !sum + !i;
    i := !i + 1
done
```

this is far from the mathematical definition of $\sum_{i=1}^{10} i$
\Longrightarrow side-effects make it harder to reason about your program

let's talk about
 functional programming

Functional Programming

the functional programming paradigm:

- no side-effects (i.e. pure programs)
- strict but rich type system
- no goto (gotos are evil)
- functions are values
brings the programming language closer to mathematics

Loops Are Recursive Functions

compute $\sum_{i=1}^{n} i$ using the functional approach
let rec sum $n=$
if $\mathrm{n}<=0$ then
0
else

$$
n+\operatorname{sum}(n-1)
$$

Loops Are Recursive Functions

compute $\sum_{i=1}^{n} i$ using the functional approach, again
let rec sum_aux acc $\mathrm{n}=$
if $\mathrm{n}<=0$ then
acc
else

```
    sum_aux (acc + n) (n - 1)
```

let sum $\mathrm{n}=$ sum_aux 0 n

Partial Application

let sum $\mathrm{n}=$ sum_aux 0 n
is equivalent to
let sum = sum_aux 0

The Type of Functions

let add $a b=a+b$
type of function add is

$$
\text { int } \rightarrow \text { int } \rightarrow \text { int }
$$

(read as int \rightarrow (int \rightarrow int) $)$
function taking an integer argument a and returning another function taking an integer argument b and returning integer $a+b$

The Type of Functions and Partial Application

example: partial application of function add
let $\mathrm{f}=$ add 5
type of function f is

$$
\text { int } \rightarrow \text { int }
$$

function taking an integer argument b and returning integer $5+b$

Functions Are Values

let add $a b=a+b$
is actually the same as:
let add $\mathrm{a}=$ fun $\mathrm{b} \rightarrow \mathrm{a}+\mathrm{b}$
or as:
let add $=$ fun $a \rightarrow$ fun $b \rightarrow a+b$

Functions as Arguments

functions can be given as arguments to other functions
let f ($\mathrm{g}:$ int \rightarrow int) ($\mathrm{x}: \mathrm{int}):$ int $=$

$$
g x+10
$$

let $n=f(\operatorname{add} 5) 3$
let $\mathrm{m}=\mathrm{f}$ (fun $\mathrm{x} \rightarrow 2 * \mathrm{x}$) 3
what is the value of n and m ?

Iterator: List Mapping

let rec map ($\mathrm{f}: ~$ ' $a \rightarrow$ 'b) (I: 'a list): 'b list $=$ match \| with

```
    | [] }->\mathrm{ []
    | x :: rem }->\mathrm{ f x :: map f rem
```

let $x=\operatorname{map}(\operatorname{add} 5)[1 ; 2 ; 3$]
let $\mathrm{y}=$ map orbital_of_atom $[\mathrm{H}|\mathrm{N}| \mathrm{Be} \mid \mathrm{Li}]$
what is the value of x and y ?

Iterator: List Folding

let rec fold

$$
(f: \quad \text { 'a } \rightarrow \text { 'b } \rightarrow \text { 'a) }
$$

(a: 'a)
(I: 'a list): 'b list =
match | with
| [] \rightarrow a
| $\mathrm{x}::$ rem \rightarrow fold f (f a x) rem
let $x=$ fold add 0 [1; 2; 3]
what is the value of x ?

Example: Sum

compute $\sum_{i=1}^{n} i$ using the functional approach, again again
let rec make_list $\mathrm{n}=$
if $\mathrm{n}<=0$ then
[]
else
n :: make_list (n - 1)
let sum $\mathrm{n}=$ fold add 0 (make_list n)

Combinator: Function Composition

let compose $\mathrm{f} \mathrm{g} \mathrm{x}=$ f ($\mathrm{g} x$)
compute $\sum_{i=1}^{n} i$ using the functional approach, again again again
let sum = compose (fold add 0) make_list
\Longrightarrow good combination properties

Matrix Product

recipe for a modular matrix product:

1. write a function which returns the product of two matrices
2. replace the use of $*$ with a function argument
3. enjoy a more general polymorph product function apply it to:

- integer multiplication $*$ for integer matrices
- float multiplication $*$. for float matrices
- other operators for other algebras

Functional Programming: Conclusion

functional programming matters

- modular
- good compositional properties
- closer to a well-known language: mathematics
- less error-prone

let's talk about
 numeric computation

OCaml and Numeric Computation

available libraries for OCaml (standard library):

- various integers
- int

31 bits (32-bits processors) or 63 bits (64-bits processors)
default integers of OCaml, fast

- int32, int64
less efficient, but one more bit
- arbitrary precision integers (modules Num and Big_int)
- floats
native floats, fast under some conditions
- large arrays (module Bigarray) of various integers and floats; any dimension (vectors, 2D matrices, 3D matrices, and more); compatible with FORTRAN matrices
bindings for libraries of other languages (including FORTRAN) may be written; some may already exist

Conclusion

should you use OCaml?
pros:

- less error-prone
- concise
- expressive (algebraic types, objects, modules and functors, labels, polymorphic variants)
- scalable (modular, compositional)
- maintainable
- fast to compile
- fast to execute
cons:
- young (less available libraries and tools)

References That Might, or Might Not, Be of Interest

OCaml website (download, documentation, community contents) http://caml.inria.fr/

John Hughes
Why Functional Programming Matters
Emmanuel Chailloux, Pascal Manoury and Bruno Pagano Developing Applications With Objective Caml

Guy Cousineau and Michel Mauny
The Functional Approach to Programming
Jon D. Harrop
OCaml for Scientists

