Regions and Permissions for Data Invariants

Romain Bardou and Claude Marché

Septembre 2009

Regions and Permissions for Data Invariants

1/1



Motivation

preservation of data invariants in pointer programs

» ownership system of Spec# [Barnett et al 04]

static typing instead of theorem provers
» Universe Types [Dietl, Miller 05]

how?
» regions [Tofte, Talpin, Jouvelot 91] ... [Banerjee et al 08]

» with permissions [Crary et al 99]

Regions and Permissions for Data Invariants 2/1



Data Invariant Example

class PoslInt {
int value;
//@ invariant this.value > 0;

void double() {
value := value + value;

}
}

Regions and Permissions for Data Invariants

3/1



Core Language

functional style with references (e; := ep, !

type Posint =

int

inv(this) = this > 0
end

val double(x: PosInt): unit =
x = Ix 4+ Ix

focus on pointers and aliasing
ignore inheritance and dynamic dispatch

Regions and Permissions for Data Invariants

4/ 1



Problem: Pointer Aliasing

val f(x: Posint, y: PosInt): unit =
x =0
x:=1/ly

what if x = y?

Regions and Permissions for Data Invariants

5/1



Problem: Components

type SortedPair =

Posint x Posint

inv(this) = this.1 < Ithis.2
end

val double(x: Posint): unit =
x = Ix + Ix

what if x is member of a SortedPair p?

s . ="

Regions and Permissions for Data Invariants

6/1



Regions
solution: group pointers by regions

pointers of two different regions may not be aliased

Regions and Permissions for Data Invariants

7/1



Permissions

permission = static linear information about a region

“linear” means:
» permissions cannot be duplicated
» permissions depend on the program point
> operations may consume some permissions

» operations may produce other permissions

Regions and Permissions for Data Invariants

8 /1



Empty Regions

regions are created empty
region p in

this produces permission pw: “p is empty”

Regions and Permissions for Data Invariants

9/1



Allocation and Singleton Regions

pointers are allocated in empty regions
new Posint[p]

this:
> consumes permission ,0®

» produces permission p°: “p is singleton”

region p is no longer empty: it is singleton

Regions and Permissions for Data Invariants 10/ 1



Group Regions

a singleton region p may be demoted to a group region
this is implicit

this:
> consumes permission p°

» produces permission p®: “p is group”

Regions and Permissions for Data Invariants 11/1



Adoption

adoption moves a pointer from a singleton region to an
already-existing group region

if x is in region o
adopt x in p

this:

> consumes permissions o> and p©

» produces permission p©

Regions and Permissions for Data Invariants 12 /1



The Permission Diagram (so far)

adopt — €

Regions and Permissions for Data Invariants 13 /1



Permissions for Invariants

use permissions to denote whether invariants hold
p". empty region, no Invariant
» p°: open singleton region, invariant does not hold

» p~: closed singleton region, invariant holds

» pC: group region, all invariants hold

only pointers in open regions can be assigned

Regions and Permissions for Data Invariants 14 /1



Packing and Unpacking

pack x

packing a pointer of p:
» consumes p°
» produces p*

> generates a proof obligation (the invariant)

unpack x

unpacking is the opposite operation:
» consumes p*

» produces p°

Regions and Permissions for Data Invariants 15/ 1



The Permission Diagram (with packing)

///—pack

o —{new }—o°
\

unpack

Regions and Permissions for Data Invariants 16 /1



Owned Regions

problem: invariants about other pointers?

type SortedPair (p1, p2) = 01
PoslInt[p1] x Posint[p2]
inv(this) = Ithis.1 < !this.2
end
p
val bad(x: SortedPair{p1, p2)[p]) @

consumes p*, p;°, po°

produces p*, p;°, p2° =
Ix.1 := 69;

Ix.2 .= 42 p2

Regions and Permissions for Data Invariants 17 /1



Owned Regions

solution: owned regions

type SortedPair =
own pg, p2
Posint[p;] x Posint[p2]
inv(this) = Ithis.1 < !this.2
end

Regions and Permissions for Data Invariants

18 / 1



The Permission Diagram (with owned regions)

Regions and Permissions for Data Invariants

unpack

19 /1



Group to Singleton?

problem: how to modify a pointer of a group region?

Regions and Permissions for Data Invariants 20 /1



Group to Singleton?

solution: extract the pointer to a singleton region

problem: what happens to the group region?
» what if several pointers are extracted?

» what if a pointer is extracted several times?

solution: group region temporarily disabled

Regions and Permissions for Data Invariants 21 /1



Linear Implication

o —op

p is disabled temporarily
o must be given to enable p

allows temporary extraction from p to o

Regions and Permissions for Data Invariants 22 /1



Focus

if y in region p:
focus y in o

this:

> consumes O'Q)

and p®
» produces ¢* and ¢ —o p

region ¢ now also contains y

Regions and Permissions for Data Invariants

23 /1



Unfocus

if y in region o:
unfocus y in p

this:
» consumes ¢* and o0 —o p
» produces p©

region o is disabled definitely

Regions and Permissions for Data Invariants

24 /1



Focus and Unfocus Usage

if x in group region p:
region o in
let xr = (focus x in o) in
unpack xr;
pack xr;
unfocus x¢ in p
X = Xf, but:
> X isinp

> Xxfisino

Regions and Permissions for Data Invariants

{o? p¢}
{o",0—op}
{o%0—op}
{0°0—op}
{o*,0—op}

{p©}

25 /1



Soundness

Definition
heap is coherent w.r.t. X:
» invariants of closed pointers hold

> ...

Theorem
If:
> e is well-typed w.r.t. types, regions, permissions
» when given permissions X, e gives back X’
» e and heap H reduce to €’ and H’
» H is coherent w.r.t. &
then:

» H' is coherent w.r.t. 3’

Regions and Permissions for Data Invariants

26 /1



Conclusion

static type system with regions and permissions

guarantees invariant preservation

» only VCs: invariants, when packing

ownership at the level of regions
can handle examples such as observer pattern

can handle some form of abstraction

» owned regions can be hidden

Regions and Permissions for Data Invariants 27 /1



Need for Inference

inference of region annotations

val f(): Posint[p] =
region o in
let x = new Posint[o] in
X :=b;
pack x; val f(): Posint =
let x = (adopt x in p) in let x = new Posint in
region o, in x = 5;
let y = (focus x in 0,) in x:=T,
unpack y; X
y =T,
pack y;
unfocus y in p;
y

Regions and Permissions for Data Invariants 28 /1



Future Works

more powerful abstraction using refinement approaches

inference

» current direction: given function prototypes and focus
annotations, infer remaining annotations

Regions and Permissions for Data Invariants 29 /1



