
Regions and Permissions for Data Invariants

Romain Bardou and Claude Marché

Septembre 2009

Regions and Permissions for Data Invariants 1 / 1

Motivation

preservation of data invariants in pointer programs

I ownership system of Spec# [Barnett et al 04]

static typing instead of theorem provers

I Universe Types [Dietl, Müller 05]

how?

I regions [Tofte, Talpin, Jouvelot 91] ... [Banerjee et al 08]

I with permissions [Crary et al 99]

Regions and Permissions for Data Invariants 2 / 1

Data Invariant Example

class PosInt {
int value;
//@ invariant this.value > 0;

void double() {
value := value + value;
}
}

Regions and Permissions for Data Invariants 3 / 1

Core Language

functional style with references (e1 := e2 , !e)

type PosInt =
int
inv(this) = !this > 0

end

val double(x : PosInt): unit =
x := !x + !x

focus on pointers and aliasing
ignore inheritance and dynamic dispatch

Regions and Permissions for Data Invariants 4 / 1

Problem: Pointer Aliasing

val f (x : PosInt, y : PosInt): unit =
x := 0;
x := 1 / !y

what if x = y?

0

x y

Regions and Permissions for Data Invariants 5 / 1

Problem: Components

type SortedPair =
PosInt × PosInt
inv(this) = !this.1 < !this.2

end

val double(x : PosInt): unit =
x := !x + !x

what if x is member of a SortedPair p?

4

x (,) p

7

Regions and Permissions for Data Invariants 6 / 1

Regions

solution: group pointers by regions

pointers of two different regions may not be aliased

a b

c

d e

f

g

h

Regions and Permissions for Data Invariants 7 / 1

Permissions

permission = static linear information about a region

“linear” means:

I permissions cannot be duplicated

I permissions depend on the program point

I operations may consume some permissions

I operations may produce other permissions

Regions and Permissions for Data Invariants 8 / 1

Empty Regions

regions are created empty

region ρ in

this produces permission ρ∅: “ρ is empty”

Regions and Permissions for Data Invariants 9 / 1

Allocation and Singleton Regions

pointers are allocated in empty regions

new PosInt[ρ]

this:

I consumes permission ρ∅

I produces permission ρS : “ρ is singleton”

region ρ is no longer empty: it is singleton

Regions and Permissions for Data Invariants 10 / 1

Group Regions

a singleton region ρ may be demoted to a group region

this is implicit

this:

I consumes permission ρS

I produces permission ρG : “ρ is group”

Regions and Permissions for Data Invariants 11 / 1

Adoption

adoption moves a pointer from a singleton region to an
already-existing group region

if x is in region σ:

adopt x in ρ

this:

I consumes permissions σS and ρG

I produces permission ρG

Regions and Permissions for Data Invariants 12 / 1

The Permission Diagram (so far)

σ∅ new σS

σG

adopt ρG

Regions and Permissions for Data Invariants 13 / 1

Permissions for Invariants

use permissions to denote whether invariants hold

I ρ∅: empty region, no invariant

I ρ◦: open singleton region, invariant does not hold

I ρ×: closed singleton region, invariant holds

I ρG : group region, all invariants hold

only pointers in open regions can be assigned

Regions and Permissions for Data Invariants 14 / 1

Packing and Unpacking

pack x

packing a pointer of ρ:

I consumes ρ◦

I produces ρ×

I generates a proof obligation (the invariant)

unpack x

unpacking is the opposite operation:

I consumes ρ×

I produces ρ◦

Regions and Permissions for Data Invariants 15 / 1

The Permission Diagram (with packing)

σ×

σG

ρG

σ∅ new σ◦

pack

unpack

σ×

σG

adopt ρG

Regions and Permissions for Data Invariants 16 / 1

Owned Regions

problem: invariants about other pointers?

type SortedPair 〈ρ1 , ρ2 〉 =
PosInt[ρ1] × PosInt[ρ2]
inv(this) = !this.1 < !this.2

end

val bad(x : SortedPair〈ρ1 , ρ2 〉[ρ])
consumes ρ×, ρ1

◦, ρ2
◦

produces ρ×, ρ1
◦, ρ2

◦ =
!x .1 := 69;
!x .2 := 42

xρ

!x.1

ρ1

!x.2

ρ2

Regions and Permissions for Data Invariants 17 / 1

Owned Regions

solution: owned regions

type SortedPair =
own ρ1 , ρ2

PosInt[ρ1] × PosInt[ρ2]
inv(this) = !this.1 < !this.2

end

xρ

!x.1

ρ.ρ1

!x.2

ρ.ρ2

Regions and Permissions for Data Invariants 18 / 1

The Permission Diagram (with owned regions)

σ×

σG

ρG

own(σ)G
σ∅ new σ◦ own(σ)G

pack

unpack

σ×

σG

adopt ρG

Regions and Permissions for Data Invariants 19 / 1

Group to Singleton?

problem: how to modify a pointer of a group region?

σ×

σG

adopt ρG

?

Regions and Permissions for Data Invariants 20 / 1

Group to Singleton?

solution: extract the pointer to a singleton region

problem: what happens to the group region?

I what if several pointers are extracted?

I what if a pointer is extracted several times?

solution: group region temporarily disabled

Regions and Permissions for Data Invariants 21 / 1

Linear Implication

σ −◦ ρ

ρ is disabled temporarily

σ× must be given to enable ρ

allows temporary extraction from ρ to σ

Regions and Permissions for Data Invariants 22 / 1

Focus

if y in region ρ:

focus y in σ

this:

I consumes σ∅ and ρG

I produces σ× and σ −◦ ρ
region σ now also contains y

Regions and Permissions for Data Invariants 23 / 1

Unfocus

if y in region σ:

unfocus y in ρ

this:

I consumes σ× and σ −◦ ρ
I produces ρG

region σ is disabled definitely

Regions and Permissions for Data Invariants 24 / 1

Focus and Unfocus Usage

if x in group region ρ:

region σ in { σ∅, ρG }
let xf = (focus x in σ) in { σ×, σ −◦ ρ }
unpack xf ; { σ◦, σ −◦ ρ }
xf := · · ·; { σ◦, σ −◦ ρ }
pack xf ; { σ×, σ −◦ ρ }
unfocus xf in ρ { ρG }

x = xf , but:

I x is in ρ

I xf is in σ

Regions and Permissions for Data Invariants 25 / 1

Soundness

Definition
heap is coherent w.r.t. Σ̄:

I invariants of closed pointers hold

I ...

Theorem
If:

I e is well-typed w.r.t. types, regions, permissions
I when given permissions Σ̄, e gives back Σ̄′

I e and heap H reduce to e ′ and H′

I H is coherent w.r.t. Σ̄

then:

I H′ is coherent w.r.t. Σ̄′

Regions and Permissions for Data Invariants 26 / 1

Conclusion

static type system with regions and permissions

guarantees invariant preservation

I only VCs: invariants, when packing

ownership at the level of regions

can handle examples such as observer pattern

can handle some form of abstraction

I owned regions can be hidden

Regions and Permissions for Data Invariants 27 / 1

Need for Inference

inference of region annotations

val f (): PosInt[ρ] =
region σ in
let x = new PosInt[σ] in
x := 5;
pack x ;
let x = (adopt x in ρ) in
region σy in
let y = (focus x in σy) in
unpack y ;
y := 7;
pack y ;
unfocus y in ρ;
y

val f (): PosInt =
let x = new PosInt in
x := 5;
x := 7;
x

Regions and Permissions for Data Invariants 28 / 1

Future Works

more powerful abstraction using refinement approaches

inference

I current direction: given function prototypes and focus
annotations, infer remaining annotations

Regions and Permissions for Data Invariants 29 / 1

