
Regions and Permissions for Data Invariants

Romain Bardou

14 January 2011

Regions and Permissions for Data Invariants 1 / 11



Introduction

we deal with complex data structures involving:

I pointers, with aliasing

I data invariants

maintaining invariants with pointer aliasing is hard as values could
be modified unexpectedly

we propose a modular type system to control aliasing and
invariants in a static way, i.e. with less proof obligations

Regions and Permissions for Data Invariants 2 / 11



Example of Complex Data Structure

hash tables:

I invariant: (key , data) stored at index: hash(key) mod len

I keys must not be modified after having been inserted
(invariant would be broken)

I associated values may be modified

memoize a function f using such hash tables:

I associate f (x) to x

I invariant: if (x , y) is in the table, y = f (x)

I associated values must not change unexpectedly
(invariant would be broken)

Regions and Permissions for Data Invariants 3 / 11



Related Works and Our Proposal

several dynamic approaches exist:

I Spec# ownership [Barnett et al 04]

I regional logic [Banerjee et al 08]

I characteristic formulas [Charguéraud 10]

I separation logic [Reynolds 02]

I dynamic frames [Kassios 06]

emphasis is on the logic

our proposal is static, i.e. “more automatic”, and uses:

I regions [Tofte, Talpin, Jouvelot 91]

I with permissions [Crary et al 99, Charguéraud 07]

emphasis is on the type system

Regions and Permissions for Data Invariants 4 / 11



Pointers Belong to Regions

we keep track of the region of a pointer in its type

Regions and Permissions for Data Invariants 5 / 11



Permissions Give Information About Regions

permissions are linear information

I ρ∅: region ρ is currently empty

I ρ◦: region ρ is singleton

I ρ×: region ρ is singleton and invariant holds

I ρG : region ρ is group and invariants hold

I ...

example:

fun add [ρt : Hashtbl , ρ: Key ; ρd : Data](t: [ρt ], k : [ρ], d : [ρd ])
consumes ρt×, ρ×

produces ρt×

Regions and Permissions for Data Invariants 6 / 11



Ownership Tree Between Regions

a region can own other regions

when ρ is packed (ρ× or ρG ), permissions on owned regions are
unavailable:

I no one can modify owned regions when owner is packed

I allow modular reasoning: owned regions may be hidden

packing hides owned permissions, unpacking restores them

Regions and Permissions for Data Invariants 7 / 11



Ownership Tree Between Regions (Example)

table:

keys: 8

contents:

values: 13

memo:

pointers of region values are used inside table.contents but are not
owned by the table but by the Fibonacci data structure

Regions and Permissions for Data Invariants 8 / 11



Soundness (1/2)

Definition 1 (heap coherence w.r.t. permissions)

I if ρ× or ρG is available, invariants of pointers of ρ hold

I ...

Theorem 1 (coherence preservation) coherence is preserved
through program reduction

Regions and Permissions for Data Invariants 9 / 11



Soundness (2/2)

Definition 2 (Why translation) we translate our programs to
Why programs by encoding each region as a small, separate heap

Theorem 2 (Why translation) if translated program reduces
(i.e. proof obligations are proven), original program reduces too

Regions and Permissions for Data Invariants 10 / 11



Conclusion

only proof obligations from our system: invariants when packing
moreover, regions are separated in proof obligations

implemented as a prototype tool called Capucine
[http://romain.bardou.fr/capucine]

we trade expressivity for staticity

I future works: extend the logic so the user can handle cases
not handled by our type system

Regions and Permissions for Data Invariants 11 / 11


