Verification of Programs With Pointers Using
Regions and Permissions

Romain Bardou

Abstract

Deductive verification consists in annotating programs by a specification,
i.e. logic formulas which describe the behavior of the program, and prove that
programs verify their specification. Tools such as the Why platform take a
program and its specification as input and compute logic formulas such that, if
they are valid, the program verifies its specification. These logic formulas can
be proven automatically or using proof assistants.

When a program is written in a language supporting pointer aliasing, i.e. if
several variables may denote the same memory cell, then reasoning about the
program becomes particularly tricky. It is necessary to specify which pointers
may or may not be equal. Invariants of data structures, in particular, are harder
to maintain.

This thesis proposes a type system which allows to structure the heap in a
modular fashion in order to control pointer aliases and data invariants. It is
based on the notions of region and permission. Programs are then translated to
Why such that pointers are separated as best as possible, to facilitate reasoning.
This thesis also proposes an inference mechanism to alleviate the need to write
region operations introduced by the language. A model is introduced to describe
the semantics of the language and prove its safety. In particular, it is proven
that if the type of a pointer tells that its invariant holds, then this invariant
indeed holds in the model. This work has been implemented as a tool named
Capucine. Several examples have been written to illustrate the language, and
where verified using Capucine.



