
Université de Paris-Sud 11 INRIA Saclay – Île-de-France
Centre d’Orsay Equipe ProVal

Vérification de programmes avec pointeurs
à l’aide de régions et de permissions

Romain Bardou

présentée le 14 octobre 2011 devant le jury composé de :

MM. Peter Müller
François Pottier
Jean Goubault-Larrecq
Burkhart Wolff
Claude Marché

1 / 51



There are two ways to write error-free programs;
only the third one works.

— Alan J. Perlis

2 / 51



Program Verification

programming needs thinking
verification is tedious

human machine

thinking good bad

repetition bad good

parts of verification are repetitive
=⇒ let the human program and the machine verify

Introduction Program Verification 3 / 51



Trade-Off: Automation vs. Expressiveness

properties:

“x is always an integer” automated (typing)

“x is always an odd integer” requires reasoning (annotations)

“for all i , a[i ] is prime” requires more reasoning (proofs)

Introduction Program Verification 4 / 51



Deductive Program Verification

program + specification

verification conditions

automatic theorem provers

(Alt-Ergo, Simplify, Z3, CVC3, ...)

proof assistants

(Coq, Isabelle, ...)

Introduction Deductive Program Verification 5 / 51



Deductive Program Verification

expressiveness:

I mainstream programming languages (C, Java...)

I (at least) first-order logic for specifications

automation:

I specification written by hand

I automatic provers for simple verification conditions

I proof assistants for difficult verification conditions

Introduction Deductive Program Verification 6 / 51



Deductive Verification: Example

void max(int i, int j)
/*@ ensures \result >= i && \result >= j */

{
if (i > j)
return i;

else
return j;

}

verification conditions:

i > j ⇒ i ≥ i ∧ i ≥ j

¬(i > j) ⇒ j ≥ i ∧ j ≥ j

Introduction Deductive Program Verification 7 / 51



Pointers

pointer = variable containing a location

pointed value = value stored at location

loc 42 · · ·· · ·
x loc

Introduction Pointers 8 / 51



Pointer Aliasing

*p = 42;

*q = 69;
/*@ assert *p = 42; */

what if p = q?

verification conditions?

Introduction Pointers 9 / 51



Data Invariants: Examples

handy specification tool

“this array is always sorted”

“this tree is a search tree”

“this tree is well-balanced”

“rocket speed is always positive”

Introduction Data Invariants 10 / 51



Related Work

ownership

I Data Groups [Leino 1998]

I Ownership Types [Clarke, Potter, Noble 1998]

I Spec# Methodology [Barnett et al. 2004]

I Universe Types [Dietl, Muller 2005]

I Considerate Reasoning [Summers, Drossopoulou 2010]

alias control

I Separation Logic [Reynolds 2002]

I Regional Logic [Banerjee, Naumann, Rosenberg 2008]

I (implicit) Dynamic Frames [Kassios 2006; Smans et al. 2009]

Regions, Permissions / Capabilities, Alias Types...

Introduction Contributions 11 / 51



Main Contribution

A type system using regions and permissions to structure
the heap in a modular fashion, control pointer aliasing and
data invariants and produce proof obligations where pointers

are separated.

implemented as a tool called Capucine

Introduction Contributions 12 / 51



Contents

Introduction

The Capucine Language
Classes
Regions
Permissions
Operations
Ownership
Coherence Preservation
Conclusion

Computing Verification Conditions

Conclusion

The Capucine Language 13 / 51



Classes

class = record + invariant + owned regions

class Pair
{
fst: int;
snd : int;
invariant fst < snd ;
}

The Capucine Language Classes 14 / 51



Pointer Types and Regions

region = set of locations
memory structured using regions

the type of a pointer [ρ] gives its region ρ

fun incrPair [r : Pair ] (p: [r ]): unit
{
p.fst ← p.fst + 1;
p.snd ← p.snd + 1;
}

The Capucine Language Regions 15 / 51



Life Cycle of Pointers

I allocation

I initialization of fields

I verification of the invariant

I insertion into a data structure

I update + invariant preservation

permissions track the state of objects

The Capucine Language Permissions 16 / 51



Permissions

permission = type-level information about a region

permissions evolve during execution:
statements consume and produce permissions

permissions cannot be duplicated

The Capucine Language Permissions 17 / 51



Allocation and Initialization

operation let region r : C
I produces r∅

operation let x = new C [ρ]

I consumes ρ∅

I produces ρ◦{f1 , · · ·, fk} and owned permissions

operation x .f ← e when x : [ρ]

I consumes ρ◦{g}
I produces ρ◦{g−f }

The Capucine Language Operations 18 / 51



Allocation: Example

let region r : Pair ; r∅

let p = new Pair [r ]; r◦{fst, snd}
p.fst ← 42; r◦{snd}
p.snd ← 69; r◦

The Capucine Language Operations 19 / 51



Permission Diagram (so far)

let region

r∅

new

r◦{· · ·}

←

r◦

The Capucine Language Operations 20 / 51



Packing and Unpacking

if y : [ρ]

operation pack y

I consumes ρ◦ and owned permissions

I produces ρ×

I requires the invariant of y as a pre-condition

operation unpack y

I consumes ρ×

I produces ρ◦ and owned permissions

note: ρ◦ required to modify y .f
=⇒ if ρ× available, then the invariant of y holds

The Capucine Language Operations 21 / 51



Example: Incrementing a Pair

fun incrPair [r : Pair ] (p: [r ]): unit
consumes r×

produces r×

{
unpack p; r◦

p.fst ← p.fst + 1; r◦

p.snd ← p.snd + 1; r◦

pack p; (* invariant must hold *) r×

}

The Capucine Language Operations 22 / 51



Permission Diagram (so far)

r×

let region

r∅

new

r◦{· · ·}

←

r◦

pack

unpack

r×

The Capucine Language Operations 23 / 51



Adoption: From Singleton to Group

if x : [σ]

operation adopt x : σ as ρ

I consumes σ× and ρG

I produces ρG

I type of x becomes [ρ]

x is then both in σ and ρ
region σ is disabled

The Capucine Language Operations 24 / 51



Permission Diagram

r×

ρG

let region

r∅

new

r◦{· · ·}

←

r◦

pack

unpack

r×

adopt

ρG

The Capucine Language Operations 25 / 51



Focus: From Group to Singleton

operation focus x : ρ as σ when x : [ρ]

I consumes ρG and σ∅

I produces σ −◦ ρ and σ×

I type of x becomes [σ]

x is then both in σ and ρ
region ρ is temporarily disabled

operation unfocus x : σ as ρ when x : [σ]

I consumes σ −◦ ρ and σ×

I produces ρG

I type of x becomes [ρ]

region ρ is re-enabled
region σ is disabled

The Capucine Language Operations 26 / 51



Aliased or Not Aliased?

p and q may be aliased:

fun f [r : Pair ] (p: [r ], q: [r ]): unit
consumes rG

produces rG

p and q cannot be aliased:

fun f [rp: Pair , rq: Pair ] (p: [rp], q: [rq]): unit
consumes rp

G rq
G

produces rp
G rq

G

The Capucine Language Operations 27 / 51



Ownership

locations may own regions

class LongPairOwn
{
single r1 : Long ;
single r2 : Long ;
fst: [r1 ];
snd : [r2 ];
invariant fst.value < snd .value;
}

invariant can only mention owned objects (enforced by typing)

The Capucine Language Ownership 28 / 51



Allocation With Ownership

let region r : LongPairOwn; r∅

let p = new LongPairOwn [r ]; r◦{fst, snd} p.r1 ∅ p.r2 ∅

let fst = new Long [p.r1 ]; r◦{fst, snd} p.r1 ◦{value} p.r2 ∅
fst.value ← 42; r◦{fst, snd} p.r1 ◦ p.r2 ∅
pack fst; r◦{fst, snd} p.r1× p.r2

∅

let snd = new Long [p.r2 ]; r◦{fst, snd} p.r1× p.r2
◦{value}

snd .value ← 69; r◦{fst, snd} p.r1× p.r2
◦

pack snd ; r◦{fst, snd} p.r1× p.r2
×

p.fst ← fst; r◦{snd} p.r1× p.r2
×

p.snd ← snd ; r◦ p.r1
× p.r2

×

pack p; r×

The Capucine Language Ownership 29 / 51



Ownership: Summary

allows invariants to depend on owned fields

I need to unpack p to modify p.fst.value

structures the heap using an ownership tree

The Capucine Language Ownership 30 / 51



Heap Coherence

we define a memory model and semantics for Capucine

we define coherence of a heap w.r.t. available permissions

I empty regions are empty

I singleton regions have exactly one location

I locations in closed regions verify their invariant

I ...

The Capucine Language Coherence Preservation 31 / 51



Coherence Preservation

Theorem (Coherence Preservation)
Coherence of the heap is preserved through execution of a
well-typed program.

The Capucine Language Coherence Preservation 32 / 51



Summary and Contributions

take the existing notion of regions and permissions

I control aliasing

my contributions

I use permissions to control invariants

I add ownership

I add region parameters to classes

I add region polymorphism
I use inference to guess some operations

I pack, unpack, adoption, focus, unfocus

The Capucine Language Conclusion 33 / 51



Contents

Introduction

The Capucine Language

Computing Verification Conditions
Use Regions to Separate Pointers
Prefix Trees
Experiments
Progress
Conclusion

Conclusion

Computing Verification Conditions 34 / 51



The Why Intermediate Language

the Why Language

I ML-like programs (without higher order)

I first-order logic

I references, with no aliasing

I computes weakest-precondition

encode Capucine programs as Why programs

I challenge: encode memory model to support aliasing

Computing Verification Conditions Use Regions to Separate Pointers 35 / 51



Computing Verification Conditions

encode locations using an abstract type

type location

encode each region using a map

type heap (α)
logic select (heap (α), location): α
logic store (heap (α), location, α): heap (α)

encode objets as records

I each field encoded as a field

I each owned region encoded as a field of type heap

Computing Verification Conditions Use Regions to Separate Pointers 36 / 51



Example: Two Regions (Capucine)

class Long = { value: int }

fun incr2 [r1 : Long , r2 : Long ] (i : [r1 ], j : [r2 ])
consumes r1

◦ r2
◦

produces r1
◦ r2

◦

post i .value = old(i .value) + 1
{
i .value ← i .value + 1;
j .value ← j .value + 1;
}

Computing Verification Conditions Use Regions to Separate Pointers 37 / 51



Example: Two Regions (Why)

type Long = { value: int }

let incr2 (r1 : ref (heap (Long)), r2 : ref (heap (Long)),
i : location, j : location)

{ true }
r1 := store (!r1 , i , { value = select (!r1 , i).value + 1 });
r2 := store (!r2 , j , { value = select (!r2 , j).value + 1 });
{ select (!r1 , i).value = select (old(!r1 ), i).value + 1 }

Computing Verification Conditions Use Regions to Separate Pointers 38 / 51



Issue

current translation: pros

I modify region =⇒ other regions untouched

current translation: cons

I modify owned region =⇒ modify root region

Computing Verification Conditions Prefix Trees 39 / 51



Flatten Ownership Tree

Burstall-Bornat component-as-array model

I one heap per field

idea: extend it to ownership trees

Computing Verification Conditions Prefix Trees 40 / 51



Flatten Ownership Tree

type Long = { value: int }
type LongPairOwn = {
r1 : heap (Long);
r2 : heap (Long);
fst: location;
snd : location
}
r : ref (heap (LongPairOwn))

becomes

r r1 value: ref (heap (heap (int)))
r r2 value: ref (heap (heap (int)))
r fst: ref (heap (location))
r snd : ref (heap (location))

Computing Verification Conditions Prefix Trees 41 / 51



Simplify Singleton Regions

r1 and r2 are singleton

r r1 value: ref (heap (heap (int)))
r r2 value: ref (heap (heap (int)))

becomes

r r1 value: ref (heap (int))
r r2 value: ref (heap (int))

Computing Verification Conditions Prefix Trees 42 / 51



Flatten Ownership Tree

p.fst.value ← 42

without flattening:

r := store (!r , p,
{ select (!r , p) with
r1 = store (select (!r , p).r1 , select (!r , p).fst,
{ select (select (!r , p).r1 , select (!r , p).fst)
with value = 42 }) })

with flattening and singleton simplification:

r r1 value := store(!r r1 value, p, 42)

Computing Verification Conditions Prefix Trees 43 / 51



Flattening: Issue

big data structures
=⇒ huge number of leaves in ownership tree
=⇒ huge number of references

recursive data structures
=⇒ infinite number of references

Computing Verification Conditions Prefix Trees 44 / 51



Prefix Tree

idea: only flatten what is used locally

fun incrLeft
[r : LongPairOwn] (p: [r ]):
unit
{
let x = p.left;
x .value ← 42;
}

r

left right

value value

node r is flattened =⇒ references r left and r right
node r left is flattened =⇒ reference r left value

Computing Verification Conditions Prefix Trees 45 / 51



Experiments

Alt-Ergo (10s timeout)
without flattening with flattening

Course 14s + 1 timeout 1.2s + 1 timeout

Sparse Arrays (*) 120s 26s

Z3 (10s timeout)
without flattening with flattening

Course 2s + 7 timeouts 1s + 3 timeouts

Sparse Arrays (*) 96s + 10 timeouts 23s + 3 timeouts

* Sparse Arrays = part of VACID-0 challenge [Leino 2010]
(involves invariants and complex data structures)

Computing Verification Conditions Experiments 46 / 51



Progress

Theorem (Progress)
Assume a well-typed Capucine program, whose proof obligations
have been proven. The program executes with no error. In
particular, it verifies its specification.

Computing Verification Conditions Progress 47 / 51



Summary and Contributions

previous work: use regions to separate pointers

I one map per group region

I one (location, value) pair per singleton region

my contributions
I apply this method with:

I allocation
I polymorphism
I ownership

I use prefix trees to achieve more separation
I experiments show this greatly helps automatic provers

Computing Verification Conditions Conclusion 48 / 51



Contents

Introduction

The Capucine Language

Computing Verification Conditions

Conclusion

Conclusion 49 / 51



Expressiveness vs. Automation

where does Capucine stand?

I region annotations in function prototypes

I no proof obligations for invariants except when packing

I inference of some pack, unpack, adopt, focus, unfocus

I type information can be used in hypotheses
(invariants, region of pointers, freshness)

Conclusion 50 / 51



Future Work

from mainstream languages to Capucine

I annotation language?

I translation of data structures (Java classes, C unions, mutable
records...)?

inference mechanism

I global analysis?

combine with other approaches

I separation logic to describe group region contents?

Conclusion 51 / 51


	Introduction
	Program Verification
	Deductive Program Verification
	Pointers
	Data Invariants
	Contributions

	The Capucine Language
	Classes
	Regions
	Permissions
	Operations
	Ownership
	Coherence Preservation
	Conclusion

	Computing Verification Conditions
	Use Regions to Separate Pointers
	Prefix Trees
	Experiments
	Progress
	Conclusion

	Conclusion

