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There are two ways to write error-free programs;
only the third one works.

— Alan J. Perlis
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Program Verification

programming needs thinking
verification is tedious

human machine

thinking good bad

repetition bad good

parts of verification are repetitive
=⇒ let the human program and the machine verify
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Trade-Off: Automation vs. Expressiveness

properties:

“x is always an integer” automated (typing)

“x is always an odd integer” requires reasoning (annotations)

“for all i , a[i ] is prime” requires more reasoning (proofs)
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Deductive Program Verification

program + specification

verification conditions

automatic theorem provers

(Alt-Ergo, Simplify, Z3, CVC3, ...)

proof assistants

(Coq, Isabelle, ...)
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Deductive Program Verification

expressiveness:

I mainstream programming languages (C, Java...)

I (at least) first-order logic for specifications

automation:

I specification written by hand

I automatic provers for simple verification conditions

I proof assistants for difficult verification conditions
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Deductive Verification: Example

void max(int i, int j)
/*@ ensures \result >= i && \result >= j */

{
if (i > j)
return i;

else
return j;

}

verification conditions:

i > j ⇒ i ≥ i ∧ i ≥ j

¬(i > j) ⇒ j ≥ i ∧ j ≥ j
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Pointers

pointer = variable containing a location

pointed value = value stored at location

loc 42 · · ·· · ·
x loc
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Pointer Aliasing

*p = 42;

*q = 69;
/*@ assert *p = 42; */

what if p = q?

verification conditions?
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Data Invariants: Examples

handy specification tool

“this array is always sorted”

“this tree is a search tree”

“this tree is well-balanced”

“rocket speed is always positive”
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Related Work

ownership

I Data Groups [Leino 1998]

I Ownership Types [Clarke, Potter, Noble 1998]

I Spec# Methodology [Barnett et al. 2004]

I Universe Types [Dietl, Muller 2005]

I Considerate Reasoning [Summers, Drossopoulou 2010]

alias control

I Separation Logic [Reynolds 2002]

I Regional Logic [Banerjee, Naumann, Rosenberg 2008]

I (implicit) Dynamic Frames [Kassios 2006; Smans et al. 2009]

Regions, Permissions / Capabilities, Alias Types...
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Main Contribution

A type system using regions and permissions to structure
the heap in a modular fashion, control pointer aliasing and
data invariants and produce proof obligations where pointers

are separated.

implemented as a tool called Capucine
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Classes

class = record + invariant + owned regions

class Pair
{
fst: int;
snd : int;
invariant fst < snd ;
}
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Pointer Types and Regions

region = set of locations
memory structured using regions

the type of a pointer [ρ] gives its region ρ

fun incrPair [r : Pair ] (p: [r ]): unit
{
p.fst ← p.fst + 1;
p.snd ← p.snd + 1;
}
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Life Cycle of Pointers

I allocation

I initialization of fields

I verification of the invariant

I insertion into a data structure

I update + invariant preservation

permissions track the state of objects
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Permissions

permission = type-level information about a region

permissions evolve during execution:
statements consume and produce permissions

permissions cannot be duplicated
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Allocation and Initialization

operation let region r : C
I produces r∅

operation let x = new C [ρ]

I consumes ρ∅

I produces ρ◦{f1 , · · ·, fk} and owned permissions

operation x .f ← e when x : [ρ]

I consumes ρ◦{g}
I produces ρ◦{g−f }
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Allocation: Example

let region r : Pair ; r∅

let p = new Pair [r ]; r◦{fst, snd}
p.fst ← 42; r◦{snd}
p.snd ← 69; r◦
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Permission Diagram (so far)

let region

r∅

new

r◦{· · ·}

←

r◦
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Packing and Unpacking

if y : [ρ]

operation pack y

I consumes ρ◦ and owned permissions

I produces ρ×

I requires the invariant of y as a pre-condition

operation unpack y

I consumes ρ×

I produces ρ◦ and owned permissions

note: ρ◦ required to modify y .f
=⇒ if ρ× available, then the invariant of y holds
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Example: Incrementing a Pair

fun incrPair [r : Pair ] (p: [r ]): unit
consumes r×

produces r×

{
unpack p; r◦

p.fst ← p.fst + 1; r◦

p.snd ← p.snd + 1; r◦

pack p; (* invariant must hold *) r×

}
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Permission Diagram (so far)

r×

let region

r∅

new

r◦{· · ·}

←

r◦

pack

unpack

r×
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Adoption: From Singleton to Group

if x : [σ]

operation adopt x : σ as ρ

I consumes σ× and ρG

I produces ρG

I type of x becomes [ρ]

x is then both in σ and ρ
region σ is disabled
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Permission Diagram

r×

ρG

let region

r∅

new

r◦{· · ·}

←

r◦

pack

unpack

r×

adopt

ρG
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Focus: From Group to Singleton

operation focus x : ρ as σ when x : [ρ]

I consumes ρG and σ∅

I produces σ −◦ ρ and σ×

I type of x becomes [σ]

x is then both in σ and ρ
region ρ is temporarily disabled

operation unfocus x : σ as ρ when x : [σ]

I consumes σ −◦ ρ and σ×

I produces ρG

I type of x becomes [ρ]

region ρ is re-enabled
region σ is disabled
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Aliased or Not Aliased?

p and q may be aliased:

fun f [r : Pair ] (p: [r ], q: [r ]): unit
consumes rG

produces rG

p and q cannot be aliased:

fun f [rp: Pair , rq: Pair ] (p: [rp], q: [rq]): unit
consumes rp

G rq
G

produces rp
G rq

G
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Ownership

locations may own regions

class LongPairOwn
{
single r1 : Long ;
single r2 : Long ;
fst: [r1 ];
snd : [r2 ];
invariant fst.value < snd .value;
}

invariant can only mention owned objects (enforced by typing)
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Allocation With Ownership

let region r : LongPairOwn; r∅

let p = new LongPairOwn [r ]; r◦{fst, snd} p.r1 ∅ p.r2 ∅

let fst = new Long [p.r1 ]; r◦{fst, snd} p.r1 ◦{value} p.r2 ∅
fst.value ← 42; r◦{fst, snd} p.r1 ◦ p.r2 ∅
pack fst; r◦{fst, snd} p.r1× p.r2

∅

let snd = new Long [p.r2 ]; r◦{fst, snd} p.r1× p.r2
◦{value}

snd .value ← 69; r◦{fst, snd} p.r1× p.r2
◦

pack snd ; r◦{fst, snd} p.r1× p.r2
×

p.fst ← fst; r◦{snd} p.r1× p.r2
×

p.snd ← snd ; r◦ p.r1
× p.r2

×

pack p; r×
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Ownership: Summary

allows invariants to depend on owned fields

I need to unpack p to modify p.fst.value

structures the heap using an ownership tree
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Heap Coherence

we define a memory model and semantics for Capucine

we define coherence of a heap w.r.t. available permissions

I empty regions are empty

I singleton regions have exactly one location

I locations in closed regions verify their invariant

I ...
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Coherence Preservation

Theorem (Coherence Preservation)
Coherence of the heap is preserved through execution of a
well-typed program.

The Capucine Language Coherence Preservation 32 / 51



Summary and Contributions

take the existing notion of regions and permissions

I control aliasing

my contributions

I use permissions to control invariants

I add ownership

I add region parameters to classes

I add region polymorphism
I use inference to guess some operations

I pack, unpack, adoption, focus, unfocus
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The Why Intermediate Language

the Why Language

I ML-like programs (without higher order)

I first-order logic

I references, with no aliasing

I computes weakest-precondition

encode Capucine programs as Why programs

I challenge: encode memory model to support aliasing
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Computing Verification Conditions

encode locations using an abstract type

type location

encode each region using a map

type heap (α)
logic select (heap (α), location): α
logic store (heap (α), location, α): heap (α)

encode objets as records

I each field encoded as a field

I each owned region encoded as a field of type heap
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Example: Two Regions (Capucine)

class Long = { value: int }

fun incr2 [r1 : Long , r2 : Long ] (i : [r1 ], j : [r2 ])
consumes r1

◦ r2
◦

produces r1
◦ r2

◦

post i .value = old(i .value) + 1
{
i .value ← i .value + 1;
j .value ← j .value + 1;
}

Computing Verification Conditions Use Regions to Separate Pointers 37 / 51



Example: Two Regions (Why)

type Long = { value: int }

let incr2 (r1 : ref (heap (Long)), r2 : ref (heap (Long)),
i : location, j : location)

{ true }
r1 := store (!r1 , i , { value = select (!r1 , i).value + 1 });
r2 := store (!r2 , j , { value = select (!r2 , j).value + 1 });
{ select (!r1 , i).value = select (old(!r1 ), i).value + 1 }

Computing Verification Conditions Use Regions to Separate Pointers 38 / 51



Issue

current translation: pros

I modify region =⇒ other regions untouched

current translation: cons

I modify owned region =⇒ modify root region
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Flatten Ownership Tree

Burstall-Bornat component-as-array model

I one heap per field

idea: extend it to ownership trees
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Flatten Ownership Tree

type Long = { value: int }
type LongPairOwn = {
r1 : heap (Long);
r2 : heap (Long);
fst: location;
snd : location
}
r : ref (heap (LongPairOwn))

becomes

r r1 value: ref (heap (heap (int)))
r r2 value: ref (heap (heap (int)))
r fst: ref (heap (location))
r snd : ref (heap (location))
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Simplify Singleton Regions

r1 and r2 are singleton

r r1 value: ref (heap (heap (int)))
r r2 value: ref (heap (heap (int)))

becomes

r r1 value: ref (heap (int))
r r2 value: ref (heap (int))
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Flatten Ownership Tree

p.fst.value ← 42

without flattening:

r := store (!r , p,
{ select (!r , p) with
r1 = store (select (!r , p).r1 , select (!r , p).fst,
{ select (select (!r , p).r1 , select (!r , p).fst)
with value = 42 }) })

with flattening and singleton simplification:

r r1 value := store(!r r1 value, p, 42)
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Flattening: Issue

big data structures
=⇒ huge number of leaves in ownership tree
=⇒ huge number of references

recursive data structures
=⇒ infinite number of references
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Prefix Tree

idea: only flatten what is used locally

fun incrLeft
[r : LongPairOwn] (p: [r ]):
unit
{
let x = p.left;
x .value ← 42;
}

r

left right

value value

node r is flattened =⇒ references r left and r right
node r left is flattened =⇒ reference r left value

Computing Verification Conditions Prefix Trees 45 / 51



Experiments

Alt-Ergo (10s timeout)
without flattening with flattening

Course 14s + 1 timeout 1.2s + 1 timeout

Sparse Arrays (*) 120s 26s

Z3 (10s timeout)
without flattening with flattening

Course 2s + 7 timeouts 1s + 3 timeouts

Sparse Arrays (*) 96s + 10 timeouts 23s + 3 timeouts

* Sparse Arrays = part of VACID-0 challenge [Leino 2010]
(involves invariants and complex data structures)
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Progress

Theorem (Progress)
Assume a well-typed Capucine program, whose proof obligations
have been proven. The program executes with no error. In
particular, it verifies its specification.
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Summary and Contributions

previous work: use regions to separate pointers

I one map per group region

I one (location, value) pair per singleton region

my contributions
I apply this method with:

I allocation
I polymorphism
I ownership

I use prefix trees to achieve more separation
I experiments show this greatly helps automatic provers
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Expressiveness vs. Automation

where does Capucine stand?

I region annotations in function prototypes

I no proof obligations for invariants except when packing

I inference of some pack, unpack, adopt, focus, unfocus

I type information can be used in hypotheses
(invariants, region of pointers, freshness)
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Future Work

from mainstream languages to Capucine

I annotation language?

I translation of data structures (Java classes, C unions, mutable
records...)?

inference mechanism

I global analysis?

combine with other approaches

I separation logic to describe group region contents?
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